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ABSTRACT 
Automatic segmentation of brain MRI data usually leaves 
some segmentation errors behind that are to be 
subsequently removed interactively, using computer 
graphics tools. This interactive removal is normally 
performed by operating on individual 2D slices. It is very 
tedious and still leaves some segmentation errors which are 
not visible on the slices. We have proposed to perform a 
novel 3D interactive correction of brain segmentation 
errors introduced by the fully automatic segmentation 
algorithms. We have developed the tool which is based on 
3D semi-automatic propagation algorithm. The paper 
describes the implementation principles of the proposed 
tool and illustrates its application. 

Keywords: computer graphics, MRI segmentation, 
image processing 

1.  INTRODUCTION 

Magnetic Resonance Imaging (MRI) is mainly used to 
visualize the structure and function of the body. Each point 
on an MRI scan corresponds to a certain point in the body 
being scanned. Determining which part of MRI scan 
corresponds to what organ can be problematic. The process 
of establishing relations between MRI data and their 
meaning is called segmentation. 

All segmentation approaches can be classified into two 
groups: automatic and interactive.  

Automatic segmentation is a well attended area of research. 
For example, segmentation with a generic brain model is 
used in [1], with the toolkit presented in [2]. Statistical 
properties of different areas of the brain are proposed to be 
used to determine which voxels belong to it in [3]. 
Graph-cut algorithm, as described in [4], represents MRI as 
a graph and uses a minimum flow partitioning for 
segmentation. 

Interactive segmentation involves direct guidance by the 
user during the segmentation process. In [5] and [6] the 
user controls the segmentation process interactively to 
obtain correct results.  

To detect the border of a certain segment, it is common to 
define energy related to this surface and minimize that 
energy [7]. Initial configuration is usually defined 

interactively by the user, with interactive minimization 
resulting in operations similar to Adobe Photoshop lasso 
tool, as it was implemented in [8] and [9]. A complete 
extension to 3D using surfaces was described in [10], 
where the interactively defined original surface evolves to 
the energy minimum.  

Interactive methods do not assume any pre-existing 
segmentation. Hence, they are not suitable for correction of 
segmentations done by the automatic algorithms. The 
automatic brain segmentation algorithms, however, are 
quite robust, and even when they do produce an incorrect 
segmentation, it is usually easily fixable. Therefore, the 
most efficient way to segment a large amount of data is to 
apply an automatic algorithm to the bulk of MRI data and 
then check and correct the result. 

In this paper we propose a 3D visualization method 
designed for efficient interactive segmentation error 
discovery and correction. Even though the 2D sections 
convey all the information without any ambiguity, some 
artifacts can only be seen in 3D since they do not 
contribute significantly to each individual 2D slice. We 
also describe a method to perform such corrections. 

2.  METHOD 

In this section we introduce our visualization method for 
interactive segmentation. Interactive segmentation places 
important restrictions on what kind of visualization 
techniques are required. For example, if interactive 
segmentation requires the user to have information on the 
extent of currently segmented area, it is important to 
provide a comprehensive feedback from the process so that 
the user does not have to switch between different views to 
get a complete picture. Hints on where to look for 
erroneously segmented areas are also important and have 
to be properly detected and visualized. The focus of the 
visualization process is on conveying 3D information 
relevant to the segmentation needs while filtering out 
unneeded parts. 

Automatic segmentation algorithms are quite advanced and 
usually produce correct results. Even when they do fail, it 
is often a small problem which could be corrected 
interactively. 

The task of interactive correction of the automatic 
segmentation results is naturally classified in two sections: 
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error localization and error correction. 

Error localization is important as most of the 
segmentations are correct, and one has to find which ones 
need to be edited. Current automatic segmentation methods 
do not provide the users with any clue on where to look for 
errors. 

The proposed method is based on the error estimation of a 
particular segmented area, using both values from MRI 
scan and automatically generated 3D surface. The 
estimation is then used to provide a 3D view of the 
segmentation so that the user is provided with clues on 
possible segmentation problems, as shown in Fig. 1. The 
3D view also uncovers defects which are difficult to spot 
using only 2D sections. The error hinting method is also 
used by the error correction algorithm which does not 
require a precise input from the user, i.e. the user just has to 
initiate and monitor the automatic detection process in a 
potential problematic error area. 

 
Fig. 1. 3D MRI region and 2D plane section. Erroneous 

regions are highlighted. 

Error correction can be still tedious, and correction of 
wrong segmentations is different from doing segmentation 
from scratch. Automatic segmentation algorithms use 
different criteria for determining how each point of the 
volume should be classified. Whenever automatic 
algorithms fail, it means that the chosen criteria were 
insufficient to distinguish between the brain and non-brain 
tissues. Therefore, there can be defined additional 
distinguishing criteria, which, when combined and aided 
with user interaction, provide us with the correct 
segmentation. 

The probability estimation is based on several error 
criteria each of which deals with a specific aspect of 
correctness estimation. The criteria are combined by 
weighted average to produce the resulting estimation. 

2.1  Correction criteria 

To calculate an error criterion, one has to examine common 
artifacts produced by the fully automatic algorithm. 
Usually, incorrect segmentations have similar image 
intensities. Then, they are unlikely to be located far from 

the automatically generated surface of the brain. Finally 
they may be dependent on the intensity changes. 

The Depth criterion assigns smaller error probability to 
deeper voxels, as they are less likely to be erroneously 
segmented. 

The Topology criterion checks that there are no 
unconnected parts in the segmentation. There are automatic 
algorithms which can mark small chunks of dura matter as 
belonging to the brain. The topology criterion is designed 
to mark such chunks as erroneous by analyzing the length 
of the line containing the point. 

The Intensity criterion uses the user input and the intensity 
information. It exploits the fact that the most erroneous 
areas are of similar intensity, as they are usually from the 
same tissue, e.g., skull, eye, etc. 

To allow a user to guide the correction process, it is 
required to provide efficient feedback mechanisms, in our 
case visualization methods tailored to displaying and 
highlighting segmentation errors. 

2.2  Visualization 

All automatic segmentation errors in skull stripping happen 
on the generated surface of the brain. There is no point to 
overwhelm the user by displaying internals of the 
segmented region. We just take outer voxels and color 
them according to the respective error criteria, so that the 
user could determine which part is most likely problematic. 
If available, white matter surface with segmentation error 
hints is visualized behind transparent brain surface, as 
shown in Fig. 1. 

In general, it is not always possible to calculate every 
criterion until the user selects a seed point. It is also not 
possible to set a seed point until all criteria are known, as 
there is no information to base the decision upon. We have 
solved this problem by providing the user with preliminary 
information, which can help the initial judgment by the 
user. As the user only sees the surface of the segmented 
area, it is impractical to use direct intensity information of 
the surface voxels, as the surface is usually of a uniform 
intensity. Volume rendering would be redundant, as we 
only need information on several layers deep. To provide 
an idea on internal structure without resorting to 
unnecessary volume rendering and without requesting an 
input from the user, we propose to color each surface voxel 
with an average intensity of the surrounding segmented 
voxels. If there are abnormalities beyond the surface of the 
segmented area, they will be immediately noticeable as a 
surface intensity pattern. 

Should such averaging be not sufficient, it is also possible 
to visualize layers of voxels below the surface. By 
interactively changing the layer, the user can get valuable 
insights on the structure of the upper layers of the brain. 
Fig. 2 shows results of the visualization by progressive 
layer removal. 

Segmentation  
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Fig. 2. Progressive interactive layer removal provides 

information on the outer voxels layout. 

Another promising approach for generating hints for 
incorrectly segmented locations is to use white matter 
surface and analyze MRI values along the normals shown 
in Fig. 3. From our experience, the users who have tried 
this feature claimed it to be very useful and generally better 
and more efficient than scanning every slice for possible 
defects. 

 
Fig. 3. Segmentation error hint generation by analyzing 

normals. 

While we avoid volume rendering, the seeds placed by the 
user can be located beneath the surface of the segmented 
area. Therefore, it is necessary to provide an ability to 
make the surface display transparent. Once the user 
suspects a region to be erroneously segmented, it is 
required that there must be an easy access to the original 
2D MRI data slices for verification. 

3.  APPLICATION 

To construct an application one has to define input data, 
consider how to arrange the software components and, 
finally, define how the software would fit into a general 
workflow. 

3.1  Workflow 

The interactive segmentation process starts with the result 
of a fully automatic processing. The correctness is 
evaluated by an expert. Automatic skull stripping 
algorithms are tuned to avoid classification of voxels 
belonging to brain as non-brain, i.e. to avoid false 
negatives. Therefore, all segmentation errors are essentially 

non-brain tissues classified as brain. 

The segmentation consists of 2 steps: model examination 
and model correction. A pure 3D display is still insufficient 
for the conclusive assessment of the segmentation since we 
only display the surface and the selected voxels. To help 
the users navigate through the volume, a 2D section 
display is also provided as shown in Fig. 4. The sections 
are continuously updated while the cursor is being moved 
across the volume, so that the user can better understand 
the internal structure of the volume to apply the interactive 
operations to it. 

 
Fig. 4. Application interface 

Automatic skull stripping requires a lot of processing 
power and it runs without supervision. It produces several 
hundreds images, which should be checked for correctness. 
The improved workflow of the interactive checking and 
correcting skull-stripped volumes is organized into the 
following steps, repeated for every MRI scan produced: 

An MRI scan is loaded into the application and the user 
can see the 3D outer surface of the object colored 
according to the average intensity of the voxels located 
close to the surface. 

3D Surface generated by the automatic approach is loaded 
and analyzed to highlight the most probable problem areas. 

 
Fig. 5. Interactive 3D control over segmentation process. 

Circle shows where interactive focus point is located. 

The user examines the pattern and scans suspicious areas 
with the 2D section tool. If the area indeed contains a 
segmentation error, the user places a seed point there, using 
either the 3D or the 2D section view. 

Once one or the several seed points are selected, the user 
starts the propagation process, which automatically 
attempts to select points similar to the initial ones. The 
automatically selected points are prominently displayed 

Segmented surface 

Overinclusion
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with a different color. The user monitors the process using 
the 2D section view or a 3D transparent view, and 
constantly checks that only invalid voxels are selected. At 
any moment, the propagation can be smoothly reverted. 
Fig. 5 shows how propagation direction can be 
interactively controlled by the user. 

The automatic process completes when any further 
propagations select only the valid voxels. The user then 
removes all the automatically selected voxels and scans for 
more segmentation errors to correct. If the user realizes 
that some valid voxels are removed, they can be recovered 
with the multilevel undo function. 

3.2  Performance 

Let’s consider an average defect spanning about 50 slices. 
Each slice takes around 10-15 sec to correct, which 
amounts to around 10-15 minutes per scan. Given 50 
erroneous images per batch, it would take more than 10 
hours to correct one batch. Our approach requires from the 
operator on average 2 minutes to locate and remove a 
similar defect. 

Therefore, it provides estimated 5-fold productivity 
increase for the correction phase. Extending the software to 
handle different segmentation tasks would save even more 
time. 

In some cases, initial automatic segmentation of white 
matter has only slight defects which are easier to correct 
than the mask itself. While we can correct such minor 
voxel misclassification, it is still necessary to remove 
non-brain voxels from the mask in order to run WM 
surface estimation algorithms reliably. We can replace the 
interactive mask correction process with the correction of 
the WM+GM segmentation, and then use the segmentation 
to obtain the mask for the second automatic segmentation 
run.  

4.  CONCLUSION  

Novel visualization algorithms, developed specifically for 
segmentation purposes, have been proposed along with a 
method for 3D interactive correction of brain segmentation 
errors introduced by the fully automatic segmentation 
algorithms. 3D visualization of the misclassification hints 
allows the user to focus attention on the problematic areas 
and avoid working with separate slices where it is not 
necessary. We have developed the tool which is based on 
3D semi-automatic propagation algorithm. The proposed 
semi-automatic method uses controlled propagation and 
allows for efficient correction of the segmentation errors. 
We have also proposed an efficient method for hinting the 
user where an error might be. This is done by averaging 
several layers of the image closest to the surface. This 
method is simple to implement and provides satisfactory 
results but it has high failure ratio and has to be replaced 
with a more robust approach. A video with the demo of the 
developed tool can be seen at: http://intune.ntu.edu.sg/ 
SCE/courses/Alexei/Video/segmentation.wmv. 
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