

A 3D TEXTURE SYNTHESIS APPROACH

Ya-Lin Su, Chin-Chen Chang*, Zen-Chung Shih**

Institute of Multimedia Engineering, National Chiao Tung University
Hsinchu 300, Taiwan (ROC)

*Department of Computer Science and Information Engineering, National United University
Miaoli 360, Taiwan (ROC)

E-mail: ccchang@nuu.edu.tw
**Department of Computer Science and Information Engineering, National Chiao Tung University

Hsinchu 300, Taiwan (ROC)

ABSTRACT

In this paper, a new approach for solid texture synthesis

from input volume data is presented. In the pre-process,

feature vectors and a similarity set were constructed for

input volume data. The feature vectors were used to

construct neighboring vectors for more accurate

neighborhood matching. The similarity set which recorded

3 candidates for each voxel helped more effective

neighborhood matching. In the synthesis process, the

pyramid synthesis method was used to synthesize solid

textures from coarse to fine level. The results of the

proposed approach were satisfactory.

Keywords: texture, texture synthesis, solid texture,

texture control.

1. INTRODUCTION

There are many different techniques for 3D surface

texturing, such as texture mapping [7], [20], [21],

procedural texturing [4], [14] and image-based surface

texturing [17], [18], [19]. Texture mapping is the easiest

way for 3D surface texturing. However, it has the common

problems of distortion, discontinuity, and unwanted seams.

Procedural texturing can generate high quality 3D surface

textures without distortion and discontinuity, but there are

still some problems. First, procedural texturing models

exclude some textures, such as marble. Second, there are

too many parameters for users to know and control. Results

depend on the designers. Image-based surface texturing

synthesizes a wider range of textures, but it fails with large

structural textures such as bricks. Further, it also distorts

when the curvature is too large. As a result, when 2D

textures are used in texturing 3D objects, there are some

disadvantages such as discontinuity, distortion on

large-curvature surfaces, and non-reusability. Thus,

textures generated for one surface cannot be used for other

surfaces.

Solid textures can be used to overcome these problems.

Peachey [13] and Perlin [14] introduced the idea of solid

textures being blocks of colored points in 3D space to

represent real-world materials. Solid textures obviate the

need for finding a parameterization for the surface of the

object to be textured while avoiding the problems of

distortion and discontinuity. Moreover, solid textures

provide texture information not only on surfaces, but also

inside the entire volume. Several methods [3], [10], [15]

use three orthogonal slices for neighborhood matching, but

there are some drawbacks in these methods: They do not

include the neighborhood information in 3D space and they

are difficult to control in 3D space.

In this paper, an approach for real 3D space texture

synthesis based on input volume data is presented.

Information-rich appearance vectors and cube

neighborhoods are used for neighborhood matching. The

results show that the proposed approach can model a wide

range of solid textures.

The rest of this paper is organized as follows: In Section 2,

works related to solid texture synthesis are reviewed. In

Section 3, the proposed approach for synthesizing solid

textures from input volume textures is presented. Results

are given in Section 4. Finally, conclusions are discussed in

Section 5.

2. RELATED WORKS

Ashikhmin [1] presented an algorithm using an interactive

painting-style interface for control over the texture

synthesis process. Lefebvre and Hoppe [11] introduced a

high-quality pyramid synthesis algorithm to achieve

parallelism. Their method includes an upsampling step to

maintain patch coherence, jittering of exemplar coordinates

to make the texture varied, and an order-independent

correction approach to improve texture quality. Lefebvre

and Hoppe [12] presented a framework for exemplar-based

texture synthesis with anisometric control. They used

appearance vectors to replace traditional RGB color values

for neighborhood matching. Their appearance space makes

the synthesis more efficient because it reduces runtime

neighborhood vectors from 5×5 grids to only 4 locations.

They also combined their pyramid synthesis with this

method to accelerate neighborhood matching and

introduced novel techniques for coherent anisometric

synthesis which reproduces arbitrary affine deformations in

textures. They provided a convenient method for texture

control. Kwatra et al. [8] presented a method for flow

control on 2D textures. They presented an algorithm to

achieve texture control on 3D surfaces [9].

Jagnow et al. [6] presented a stereological technique for

28

solid textures. This approach uses traditional stereological

methods to synthesize 3D solid textures from 2D images.

They synthesized solid textures for spherical particles and

then extended the technique by applying it to particles of

arbitrary shapes. Their approach needs cross-section

images to record the distribution of circle sizes on 2D

slices and build the relationship of 2D profile density and

3D particle density. Users can use the particle density to

reconstruct the volume data by adding one particle at a

time, meaning this step is manual. This method uses many

2D profiles to construct 3D density for volume results.

Their results are good for marble textures, but their system

is not automatic and only for particle textures. Chiou and

Yang [2] improved this method to an automatic process,

but still only for particle textures.

Qin et al. [15] presented an image-based solid texturing

based on a basic gray-level aura matrices (BGLAMs)

framework. They used BGLAMs rather than traditional

gray-level histograms for neighborhood matching. They

created aura matrices from input exemplars and then

generated a solid texture from multiple view directions. For

each voxel in the volume, they only considered the pixels

on the three orthogonal slices for neighborhood matching.

Their system is fully automatic and requires no user

interaction in the process. Furthermore, they can generate

faithful results for both stochastic and structural textures.

However, they needed large storages for large matrices and

their results are not good for color textures.

Kopf et al. [10] introduced a solid texture synthesis method

from 2D exemplars. They extended 2D texture

optimization techniques to synthesize 3D solid textures and

then used the optimization approach with histogram

matching to preserve global statistical properties. They

only considered the neighborhood coherence in three

orthogonal slices for one voxel and iteratively increased

the similarity between the solid textures and the exemplar.

Their approach generates good results for a wide range of

textures.

Takayama et. al. [16] presented a method for filling a

model with anisotropic textures. They specified volume

textures to map to 3D objects. They pasted solid texture

exemplars repeatedly on the 3D object. Users can design

volumetric tensor fields over the mesh and the texture

patches are placed according to these fields.

3. SOLID SYNTHESIS PROCESS

3.1 Feature Vector Generation

In the proposed approach, volume data values in color

space are transformed into feature vectors in appearance

space. The information-rich feature vectors for each voxel

are used to synthesize high-quality and efficient solid

textures.

As shown in Fig. 1, after getting the RGB color values of

an input volume data, the values in 5×5×5 grids for each

voxel in an input volume exemplar V are used to construct

feature vectors to form an appearance-space exemplar V .

There are 375 dimensions (125 for grids and 3 for RGB)

for each voxel in V . Then, PCA is performed to map V

onto a low-dimensional transformed exemplar V
~
 .

Fig. 1. Feature vector generation from an input volume

exemplar V to a transformed exemplar V
~
 .

3.2 Similarity Set Generation

Based on the k -coherence search method [21], the k

most similar voxels from all voxels in the transformed

exemplar V
~
 for each voxel p can be obtained. Then,

the candidate set)(...1 pC l

k
 to record the k candidates

similar to voxel p is constructed, where l is a pyramid

level, ppC l)(1
 and k is a user-defined parameter.

Based on the principle of coherence synthesis [1], the k

most similar voxels from the nnn neighborhoods of

voxel p in the transformed exemplar V
~
 can be

obtained to construct the similarity set)(...1 pC l

k
 for voxel

p , where n is a user-defined parameter to control the

window size for coherent synthesis. However, it has the

local minimum problem because global optimization is not

considered. To avoid the local minimum problem, after

finding)(1 pC l , there is a restriction which means that the

voxel in the nnn neighborhoods of)(1 pC l can not

be)(2 pC l and the other voxels searched are)(2 pC l . By the

same way, the voxel in the nnn neighborhoods of

)(pC l

n
 cannot be)(1 pC l

n
for voxel p until)(...1 pC l

k
is

constructed.

3.3 Pyramid Solid Texture Synthesis

3.3.1 Pyramid Upsampling

Based on the pyramid synthesis method [5], the proposed

approach synthesizes from one voxel to a m×m×m solid

texture,
LSS ~0
, where mL 2log . A volume data S is

synthesized in which each voxel pS stores the

coordinates of an exemplar voxel. First, a voxel is built and

assigned the value (1,1,1) as the coordinate. Then, the

coordinates of parent voxels for the next level are

upsampled. Each of the eight children is assigned the

parent coordinates plus a child-dependent offset as follows:

 lll hpSpS][]2[1
,

29

1

1

1

,

1

1

0

,

1

0

1

,

1

0

0

,

0

1

1

,

0

1

0

,

0

0

1

,

0

0

0
,

where lh denotes the regular output spacing of exemplar

coordinates in level l and)(log22
lm

lh

 ; denotes the

relative locations for 8 children.

3.3.2 Jitter Method
After upsampling the coordinates, the upsampled

coordinates are jittered to achieve deterministic

randomness. The upsampled coordinates at each level are

perturbed by

)(][][pJpSpS lll ,

where
lll rpHhpJ)()(is a jitter function produced by a

hash function 22 1,1:)(pH and a user-defined

per-level parameter lr .

3.3.3 Voxel Correction

To make the jittered coordinates similar to those in

exemplar V , the jittered coordinates are used to recreate

neighborhoods. There is a feature value for each voxel after

constructing feature vectors. For each voxel p , the

feature values of its neighborhoods at the current level are

gathered to obtain a neighborhood vector)(pN
lS

. Then,

the most similar voxel is searched from the transformed

exemplar V
~
 to make the result similar to exemplar V .

In neighborhood matching, 8 diagonal locations for voxel

p are used to obtain the neighborhood vector)(pN
lS

:

1

1

1

]][[
~

)(' pSVpN
lS

.

Then, the proposed approach applies Lefebvre and Hoppe’s

approach [12] to perform 3D coordinate correction. First,

the feature values from 4 synthesized voxels near

neighboring voxels of voxel p , p , are averaged as

the new feature value of voxel p . The averaged feature

value);(pN
lS

of voxel p is computed by

]][[
~

4

1
);('

, pSVpN MMSl

,

where

100

000

000

,

000

010

000

,

000

000

001

,

000

000

000
.

Second, the new feature values from 8 diagonal voxels are

used to construct neighborhood vectors)(pN
lS

.

A voxel u which is most similar to voxel p is searched

by comparing neighborhood vectors)(pN
lS

 and)(uN
lS

.

The similarity sets and coherence synthesis method are

used in the searching process. The 8 neighboring voxels of

voxel p are used to infer where voxel u is.

In the same way, there are 8 neighboring voxels of voxel

p and each of them has 3 similar voxels. Therefore, 24

candidates are inferred for voxel p . Then, the 24

)(uN
lS

s are computed, where u is a candidate. These

)(uN
lS

s are compared with)(pN
lS

 for neighborhood

matching and the most similar voxel u is found to

replace voxel p .

4. RESULTS

To evaluate the effectiveness of the proposed approach,

several experiments were done. The proposed algorithm

was implemented in MATLAB with a PC with 2.67GHz

and 2.66GHz Core2 Quad CPU and 4.0GB of system

memory.

Fig. 2 shows (a) an input volume data (Case_1), (b) the

cross section at X=32, Y=32, and Z=32 for the input

volume data, (c) a resulting volume data and (d) the cross

section at X=64, Y=64, and Z=64 for the resulting volume

data. The input volume data was a stochastic and

marble-like solid texture. It only contained two vivid colors.

It was information-rich, only needing a small amount of

data to represent the whole texture. The result was

continuous and not the duplication of the input data.

Fig. 3 shows (a) an input volume data (Case_2), (b) the

cross section at X=32, Y=32, and Z=32 for the input

volume data, (c) a resulting volume data and (d) the cross

section at X=64, Y=64, and Z=64 for the resulting volume

data. The input volume data was a particle-like solid

texture. It contained few colors and there was a clear

difference between particles and background. As long as

there were few complete particle patterns in the input

volume data, desirable synthesized results were obtained.

Fig. 2. (a) input volume data (Case_1), (b) cross section at

X=32, Y=32, and Z=32 for input volume data, (c) resulting

volume data and (d) cross section at X=64, Y=64, and

30

Z=64 for resulting volume data.

Fig. 3. (a) input volume data (Case_2), (b) cross section at

X=32, Y=32, and Z=32 for input volume data, (c) resulting

volume data and (d) cross section at X=64, Y=64, and

Z=64 for resulting volume data.

5. CONCLUSIONS

An exemplar-based approach for solid texture synthesis has

been presented. The proposed approach satisfactorily

synthesized solid textures from input volume textures. In

future, the proposed approach was time-consuming. This

problem will be addressed in future research.

ACKNOWLEDGEMENTS

The authors would like to thank the National Science

Council, Taiwan (ROC), for financially supporting this

research under Contract No. NSC 96-2221-E-239-027.

REFERENCES

[1] M. Ashikhmin, “Synthesizing Natural Textures,” ACM

SIGGRAPH Symposium on Interactive 3D Graphics,

pp. 217-226, 2001.

[2] J.W. Chiou and C.K.Yang, “Automatic 3D Solid

Texture Synthesis from a 2D Image,” Master’s Thesis,

Department of Information Management, National

Taiwan University of Science and Technology, 2007.

[3] J.M. Dischler, D. Ghazanfarpour, and R. Freydier,

“Anisotropic Solid Texture Synthesis Using

Orthogonal 2D Views,” Eurographics 1998, vol. 17,

no. 3, pp. 87-95, 1998.

[4] D.S. Ebert, F.K. Musgrave, K.P. Peachey, K.

Perlin, and S. Worley, Texturing & Modeling: A

Procedural Approach, third ed. Academic Press, 2002.

[5] D.J. Heeger, and J.R. Bergen, “Pyramid-Based

Texture Analysis Synthesis,” ACM SIGGRAPH 1995,

vol. 14, no. 3, pp. 229-238, 1995.

[6] D. Jagnow, J. Dorsey, and H. Rushmeier,

“Stereological Techniques for Solid Textures,” ACM

SIGGRAPH 2004, vol. 23, no. 3, pp. 329-335, 2004.

[7] V. Kraevoy, A. Sheffer, and C. Gotsman,

“Matchmaker: Constructing Constrained Texture

Maps,” ACM SIGGRAPH 2003, vol. 22, no. 3, pp.

326-333, 2003.

[8] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra,

“Texture Optimization for Exampled-based

Synthesis,” ACM SIGGRAPH 2005, vol. 24, no. 3,

2005.

[9] V. Kwatra, D. Adalsteinsson, T. Kim, N. Kwatra, M.

Carlson, and M. Lin, “Texturing Fluids,” IEEE

Transactions on Visualization and Computer Graphics,

vol.13, no. 5, pp.939-952, 2007.

[10] J. Kopf, C.W. Fu, D. Cohen-Or, O. Deussen, D.

Lischinski, and T.T. Wong, “Solid Texture Synthesis

from 2D Exemplars,” ACM SIGGRAPH 2007, vol. 26,

no. 3, 2007.

[11] S. Lefebvre, and H. Hoppe, “Parallel Controllable

Texture Synthesis,” ACM SIGGRAPH 2005, vol. 24,

no. 3, pp. 777-786, 2005.

[12] S. Lefebvre and H. Hoppe, “Appearance-space Texture

Synthesis,” ACM SIGGRAPH 2006, vol. 25, no. 3,

2006.

[13] D.R. Peachy, “Solid Texturing of Complex Surfaces,”

ACM SIGGPRACH 1985, vol. 19, no. 3, pp. 279-286,

1985.

[14] K. Perlin, “An Image Synthesizer,” ACM

SIGGPRACH 1985, vol. 19, no. 3, pp. 287-296, 1985.

[15] X. Qin and Y.H. Yang, “Aura 3D Textures,” IEEE

Transactions on Visualization and Computer Graphics,

vol. 13, no. 2, pp.379-389, 2007.

[16] K. Takayama, M. Okade, T. Ijirl, and T. Igarashi,

“Lapped Solid Textures: Filling a Model with

Anisotropic Textures,” ACM SIGGRAPH 2008, vol.

27, no. 3, 2008.

[17] G. Turk, “Texture Synthesis on Surfaces,” ACM

SIGGRAPH 2001, vol. 20, no. 3, pp. 347-354, 2001.

[18] L.Y. Wei and M. Levoy, “Texture Synthesis Over

Arbitrary Manifold Surfaces,” ACM SIGGRAPH 2001,

vol. 20, no. 3, pp. 355-360, 2001.

[19] L. Ying, A. Hertzmann, H. Biermann, and D. Zorin,

“Texture and Shape Synthesis on Surfaces,”

Eurographics Workshop on Rendering 2001, vol. 12,

pp. 301-312, 2001.

[20] S. Zelinka and M. Garland, “Interactive Texture

Synthesis on Surfaces Using Jump Maps,”

Eurographics Workshop on Rendering 2003, vol. 14,

pp. 90-96, 2003.

[21] K. Zhou, X. Wang, Y. Tong, M. Desbrun, B. Guo, and

H.Y. Shum, “Synthesis of Bidirectional Texture

Functions on Arbitrary Surfaces,” ACM SIGGRAPH

2002, vol. 21, no. 3, pp. 665-672, 2002.

31

