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ABSTRACT 
 

In this paper, a new approach for solid texture synthesis 

from input volume data is presented. In the pre-process, 

feature vectors and a similarity set were constructed for 

input volume data. The feature vectors were used to 

construct neighboring vectors for more accurate 

neighborhood matching. The similarity set which recorded 

3 candidates for each voxel helped more effective 

neighborhood matching. In the synthesis process, the 

pyramid synthesis method was used to synthesize solid 

textures from coarse to fine level. The results of the 

proposed approach were satisfactory. 

 

Keywords: texture, texture synthesis, solid texture, 

texture control. 

 

1. INTRODUCTION 
 

There are many different techniques for 3D surface 

texturing, such as texture mapping [7], [20], [21], 

procedural texturing [4], [14] and image-based surface 

texturing [17], [18], [19]. Texture mapping is the easiest 

way for 3D surface texturing. However, it has the common 

problems of distortion, discontinuity, and unwanted seams. 

Procedural texturing can generate high quality 3D surface 

textures without distortion and discontinuity, but there are 

still some problems. First, procedural texturing models 

exclude some textures, such as marble. Second, there are 

too many parameters for users to know and control. Results 

depend on the designers. Image-based surface texturing 

synthesizes a wider range of textures, but it fails with large 

structural textures such as bricks. Further, it also distorts 

when the curvature is too large. As a result, when 2D 

textures are used in texturing 3D objects, there are some 

disadvantages such as discontinuity, distortion on 

large-curvature surfaces, and non-reusability. Thus, 

textures generated for one surface cannot be used for other 

surfaces.  

 

Solid textures can be used to overcome these problems. 

Peachey [13] and Perlin [14] introduced the idea of solid 

textures being blocks of colored points in 3D space to 

represent real-world materials. Solid textures obviate the 

need for finding a parameterization for the surface of the 

object to be textured while avoiding the problems of 

distortion and discontinuity. Moreover, solid textures 

provide texture information not only on surfaces, but also 

inside the entire volume. Several methods [3], [10], [15] 

use three orthogonal slices for neighborhood matching, but 

there are some drawbacks in these methods: They do not 

include the neighborhood information in 3D space and they 

are difficult to control in 3D space.  

 

In this paper, an approach for real 3D space texture 

synthesis based on input volume data is presented. 

Information-rich appearance vectors and cube 

neighborhoods are used for neighborhood matching. The 

results show that the proposed approach can model a wide 

range of solid textures.  

 

The rest of this paper is organized as follows: In Section 2, 

works related to solid texture synthesis are reviewed. In 

Section 3, the proposed approach for synthesizing solid 

textures from input volume textures is presented. Results 

are given in Section 4. Finally, conclusions are discussed in 

Section 5.   

 

2. RELATED WORKS 
 

Ashikhmin [1] presented an algorithm using an interactive 

painting-style interface for control over the texture 

synthesis process. Lefebvre and Hoppe [11] introduced a 

high-quality pyramid synthesis algorithm to achieve 

parallelism. Their method includes an upsampling step to 

maintain patch coherence, jittering of exemplar coordinates 

to make the texture varied, and an order-independent 

correction approach to improve texture quality. Lefebvre 

and Hoppe [12] presented a framework for exemplar-based 

texture synthesis with anisometric control. They used 

appearance vectors to replace traditional RGB color values 

for neighborhood matching. Their appearance space makes 

the synthesis more efficient because it reduces runtime 

neighborhood vectors from 5×5 grids to only 4 locations. 

They also combined their pyramid synthesis with this 

method to accelerate neighborhood matching and 

introduced novel techniques for coherent anisometric 

synthesis which reproduces arbitrary affine deformations in 

textures. They provided a convenient method for texture 

control. Kwatra et al. [8] presented a method for flow 

control on 2D textures. They presented an algorithm to 

achieve texture control on 3D surfaces [9].  
 

Jagnow et al. [6] presented a stereological technique for 
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solid textures. This approach uses traditional stereological 

methods to synthesize 3D solid textures from 2D images. 

They synthesized solid textures for spherical particles and 

then extended the technique by applying it to particles of 

arbitrary shapes. Their approach needs cross-section 

images to record the distribution of circle sizes on 2D 

slices and build the relationship of 2D profile density and 

3D particle density. Users can use the particle density to 

reconstruct the volume data by adding one particle at a 

time, meaning this step is manual. This method uses many 

2D profiles to construct 3D density for volume results. 

Their results are good for marble textures, but their system 

is not automatic and only for particle textures. Chiou and 

Yang [2] improved this method to an automatic process, 

but still only for particle textures.  

 

Qin et al. [15] presented an image-based solid texturing 

based on a basic gray-level aura matrices (BGLAMs) 

framework. They used BGLAMs rather than traditional 

gray-level histograms for neighborhood matching. They 

created aura matrices from input exemplars and then 

generated a solid texture from multiple view directions. For 

each voxel in the volume, they only considered the pixels 

on the three orthogonal slices for neighborhood matching. 

Their system is fully automatic and requires no user 

interaction in the process. Furthermore, they can generate 

faithful results for both stochastic and structural textures. 

However, they needed large storages for large matrices and 

their results are not good for color textures.  

 

Kopf et al. [10] introduced a solid texture synthesis method 

from 2D exemplars. They extended 2D texture 

optimization techniques to synthesize 3D solid textures and 

then used the optimization approach with histogram 

matching to preserve global statistical properties. They 

only considered the neighborhood coherence in three 

orthogonal slices for one voxel and iteratively increased 

the similarity between the solid textures and the exemplar. 

Their approach generates good results for a wide range of 

textures.  

 

Takayama et. al. [16] presented a method for filling a 

model with anisotropic textures. They specified volume 

textures to map to 3D objects. They pasted solid texture 

exemplars repeatedly on the 3D object. Users can design 

volumetric tensor fields over the mesh and the texture 

patches are placed according to these fields. 

 

3. SOLID SYNTHESIS PROCESS 
 

3.1 Feature Vector Generation 
 

In the proposed approach, volume data values in color 

space are transformed into feature vectors in appearance 

space. The information-rich feature vectors for each voxel 

are used to synthesize high-quality and efficient solid 

textures.  

 

As shown in Fig. 1, after getting the RGB color values of 

an input volume data, the values in 5×5×5 grids for each 

voxel in an input volume exemplar V are used to construct 

feature vectors to form an appearance-space exemplar V  . 

There are 375 dimensions (125 for grids and 3 for RGB) 

for each voxel in V  . Then, PCA is performed to map V   

onto a low-dimensional transformed exemplar V
~
 .  

 

 
Fig. 1. Feature vector generation from an input volume 

exemplar V  to a transformed exemplar V
~
 . 

 

3.2 Similarity Set Generation 
 

Based on the k -coherence search method [21], the k  

most similar voxels from all voxels in the transformed 

exemplar V
~
  for each voxel p can be obtained. Then, 

the candidate set )(...1 pC l

k
 to record the k  candidates 

similar to voxel p  is constructed, where l is a pyramid 

level, ppC l )(1
 and k  is a user-defined parameter.  

 

Based on the principle of coherence synthesis [1], the k  

most similar voxels from the nnn   neighborhoods of 

voxel p  in the transformed exemplar V
~
  can be 

obtained to construct the similarity set )(...1 pC l

k
 for voxel 

p , where n  is a user-defined parameter to control the 

window size for coherent synthesis. However, it has the 

local minimum problem because global optimization is not 

considered. To avoid the local minimum problem, after 

finding )(1 pC l , there is a restriction which means that the 

voxel in the nnn   neighborhoods of )(1 pC l  can not 

be )(2 pC l  and the other voxels searched are )(2 pC l . By the 

same way, the voxel in the nnn   neighborhoods of 

)( pC l

n
 cannot be )(1 pC l

n
for voxel p  until )(...1 pC l

k
is 

constructed. 

 

3.3 Pyramid Solid Texture Synthesis 
 

3.3.1 Pyramid Upsampling 
 

Based on the pyramid synthesis method [5], the proposed 

approach synthesizes from one voxel to a m×m×m solid 

texture, 
LSS ~0
, where mL 2log . A volume data S  is 

synthesized in which each voxel  pS  stores the 

coordinates of an exemplar voxel. First, a voxel is built and 

assigned the value (1,1,1) as the coordinate. Then, the 

coordinates of parent voxels for the next level are 

upsampled. Each of the eight children is assigned the 

parent coordinates plus a child-dependent offset as follows: 

 

  lll hpSpS ][]2[ 1
,                                                  
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where lh  denotes the regular output spacing of exemplar 

coordinates in level l  and )(log22
lm

lh


 ;   denotes the 

relative locations for 8 children. 

 

3.3.2 Jitter Method 
After upsampling the coordinates, the upsampled 

coordinates are jittered to achieve deterministic 

randomness. The upsampled coordinates at each level are 

perturbed by  

 

)(][][ pJpSpS lll  ,                                                         

 

where
lll rpHhpJ )()(   is a jitter function produced by a 

hash function  22 1,1:)( pH  and a user-defined 

per-level parameter lr . 

 

3.3.3 Voxel Correction 
 

To make the jittered coordinates similar to those in 

exemplar V , the jittered coordinates are used to recreate 

neighborhoods. There is a feature value for each voxel after 

constructing feature vectors. For each voxel p , the 

feature values of its neighborhoods at the current level are 

gathered to obtain a neighborhood vector )( pN
lS

. Then, 

the most similar voxel is searched from the transformed 

exemplar V
~
  to make the result similar to exemplar V . 

In neighborhood matching, 8 diagonal locations for voxel 

p are used to obtain the neighborhood vector )( pN
lS

: 
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Then, the proposed approach applies Lefebvre and Hoppe’s 

approach [12] to perform 3D coordinate correction. First, 

the feature values from 4 synthesized voxels near 

neighboring voxels of voxel p , p , are averaged as 

the new feature value of voxel p . The averaged feature 

value );( pN
lS

of voxel p  is computed by  

 

]][[
~

4

1
);( '

,    pSVpN MMSl

,        
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Second, the new feature values from 8 diagonal voxels are 

used to construct neighborhood vectors )( pN
lS

. 

 

A voxel u  which is most similar to voxel p  is searched 

by comparing neighborhood vectors )( pN
lS

 and )(uN
lS

. 

The similarity sets and coherence synthesis method are 

used in the searching process. The 8 neighboring voxels of 

voxel p  are used to infer where voxel u  is.  

 

In the same way, there are 8 neighboring voxels of voxel 

p  and each of them has 3 similar voxels. Therefore, 24 

candidates are inferred for voxel p . Then, the 24 

)(uN
lS

s are computed, where u  is a candidate. These 

)(uN
lS

s are compared with )( pN
lS

 for neighborhood 

matching and the most similar voxel u  is found to 

replace voxel p . 

 

4. RESULTS 
 

To evaluate the effectiveness of the proposed approach, 

several experiments were done. The proposed algorithm 

was implemented in MATLAB with a PC with 2.67GHz 

and 2.66GHz Core2 Quad CPU and 4.0GB of system 

memory.  
 

Fig. 2 shows (a) an input volume data (Case_1), (b) the 

cross section at X=32, Y=32, and Z=32 for the input 

volume data, (c) a resulting volume data and (d) the cross 

section at X=64, Y=64, and Z=64 for the resulting volume 

data. The input volume data was a stochastic and 

marble-like solid texture. It only contained two vivid colors. 

It was information-rich, only needing a small amount of 

data to represent the whole texture. The result was 

continuous and not the duplication of the input data. 

 

Fig. 3 shows (a) an input volume data (Case_2), (b) the 

cross section at X=32, Y=32, and Z=32 for the input 

volume data, (c) a resulting volume data and (d) the cross 

section at X=64, Y=64, and Z=64 for the resulting volume 

data. The input volume data was a particle-like solid 

texture. It contained few colors and there was a clear 

difference between particles and background. As long as 

there were few complete particle patterns in the input 

volume data, desirable synthesized results were obtained. 

 

 
Fig. 2. (a) input volume data (Case_1), (b) cross section at 

X=32, Y=32, and Z=32 for input volume data, (c) resulting 

volume data and (d) cross section at X=64, Y=64, and 
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Z=64 for resulting volume data. 

 

 
Fig. 3. (a) input volume data (Case_2), (b) cross section at 

X=32, Y=32, and Z=32 for input volume data, (c) resulting 

volume data and (d) cross section at X=64, Y=64, and 

Z=64 for resulting volume data. 

 

5. CONCLUSIONS 
 

An exemplar-based approach for solid texture synthesis has 

been presented. The proposed approach satisfactorily 

synthesized solid textures from input volume textures. In 

future, the proposed approach was time-consuming. This 

problem will be addressed in future research. 
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