

A RENDERING ALGORITHM FOR HYBRID SCENE REPRESENTATION

Yen Tien

Ins. of Multimedia Engineering
National Chiao Tung University

Hsinchu, Taiwan (ROC)
southp0105@gmail.com

Yun-Fung Chou

Ins. of Multimedia Engineering
National Chiao Tung University

Hsinchu, Taiwan (ROC)
yfchou@cs.nctu.edu.tw

Zen-Chung Shih

Dep. of Computer Science
National Chiao Tung University

Hsinchu 300, Taiwan (ROC)
zcshih@cs.nctu.edu.tw

ABSTRACT

In this paper, we discuss two fundamental issues of hybrid
scene representation: constructing and rendering. A hybrid
scene consists of triangular meshes and point-set models.
Consider the maturity of modeling techniques of triangular
meshes, we suggest that generate a point-set model from a
triangular mesh might be an easier and more economical
way. We improve stratified sampling by introducing the
concept of priority. Our method has the flexibility that one
may easily change the importance criteria by substituting
priority functions. While many works were devoted to
blend rendering results of point and triangle, our work tries
to render point-set models and triangular meshes as
individuals. We propose a novel way to eliminate depth
occlusion artifacts and to texture a point-set model. Finally,
we implement our rendering algorithm with the new
features of the shader model 4.0 and turns out to be easily
integrated with existing rendering techniques for triangular
meshes.

Keywords: computer graphics, mesh sampling,
object-space EWA splatting, point-based model, point set

1. INTRODUCTION

Point-set model is one of the most widely concerned
geometric representations. For its conceptual simplicity,
unstructured nature and ease of data maintenance, its
possibilities have been extensively studied for decades.

One of the most significant discussions is to combine the
advantages of triangular mesh and point-set model. Since
triangles can better capture the flat area and sharp features
of a surface while points do better on the complex part,
many works were done in mixing both representations.
POP system [6], sequential point trees [8], and Cocunu L.
and Hege H. C. [7] construct LOD representation and
render triangles when it is a faster option. All these works
blend the rendering result of triangles and of points to
create a smooth transition. Guennebaud G. and Gross M.
[10] further discuss the blending issues in EWA splatting
algorithm. However, they did not consider the issues when
blending is not desired, e.g. triangular meshes and point-set
models are different objects.

In this paper, we focus on the hybrid scene which
triangular meshes and point-set models are individuals. We

visit the following issues:

How to construct a hybrid scene?
Because of the long dominating history and development
of related techniques, there are plenty of sources of
triangular meshes. In contrast, an intuitive way to obtain a
point-set model might be through a 3D scanner, which is
not available all the time. Considering the popularity of
packages of triangular mesh modeling tools, we propose
that generating point-set models via sampling a triangular
mesh seems to be both reasonable and economical way. In
this paper, we propose a priority-based sampling algorithm
to convert a triangular mesh to a point-set model. After
sampling, we further generate the corresponding splat
representation with a modified version of [28], since we
render a point-set model with splatting algorithm.

How to render a hybrid scene?
In this issue, we propose several basic policies: the
algorithm must be easily integrated to existing triangular
mesh rendering algorithm with reasonable performance.
Since the great work by Zwicker M., et. al. [29], EWA

Fig. 1: Rendering results of our techniques. The top row
shows a triangular-mesh man wearing a point-set clothes.
The bottom row shows two Stanford bunnies with different
textures.

17

splatting becomes one of the most popular ways to render a
point-set model because of its superior quality. The original
work of M. Zwicker et. al. [29] presented a software
implementation. Many works were done to investigate the
power of graphics hardware since then [3], [4], [5], [22].
Our algorithm follows the same spirits. We propose a novel
way to implement EWA splatting based on shader model
4.0 with DirectX 10. Consequently, our system is
guaranteed to be easily integrated into existing triangular
mesh rendering system.

In the following sections, we first introduce related
previous works of techniques related to point-set models in
section 2. In section 3, we describe the sampling and the
splat generation algorithm that we use to produce point-set
model. Our rendering algorithm will then be described in
section 4 in detail. Finally, we show our results and
conclusions in chapters 5 and 6, respectively.

2. RELATED WORKS

Using points as primitives was first proposed by Levoy and
Whitted [15]. Because of the development of technology of
range scanners and the conceptual simplicity of a point,
many works were devoted to this field since then. However,
efficient rendering of point-set models was not possible
until the work by Grossman J. P. and Dally W. J. [9]. They
developed an image-space surface reconstruction algorithm
and made a great step forward in both the rendering
performance and quality. Later, QSplat [23] introduced
splat with flat-shading quality and multi-resolution data
structure to deal with massive point sets.

Alexa M. et. al. [1] introduced the concept of MLS
(moving-least-square) fitting with respect to a plane. It
soon became the main trend of the surface definition of
point set because of its great approximation of the surface
and indefinitely differentiability [13], [14]. Recently,
Guennebaud G. and Gross M. [11] suggested to define the
surface with MLS fitting with respect to algebraic surface
to gain more accuracy.

Zwicker M. et. al. [29] presented a pure software
implementation of EWA(elliptical-weighted-average)
splatting and achieved superior rendering quality and
handled transparency correctly. Many works were then
devoted to develop an efficient way to implement EWA
splatting on graphics hardware [3], [4, [5, [22]. Recently,
Weyrich T. et. al. [27] further presented a prototype of
graphics adapter for EWA splatting.

The LOD of point-set model was also investigated for
efficiency. QSplat [23] organized points as
bounding-sphere hierarchy and gained a great performance
and memory efficiency via densely encoding node
information. For solving depth order and LOD, Zwicker M.
et. al. [23] and Pfister H. et. al [21] first introduced
layered-depth cube (LDC), which is basically an improved
version of layered-depth map [24]. Dachsbacher C. et. al.
[8] developed a LOD structure which may process and
select level entirely on graphics adapter.

Since point set may represent complex geometry efficiently
while triangle may be a better choice for broad flat region
and sharp features, hybrid representation of were
investigated [6], [7], [8], [10]. They rendered and blended
the surface color of triangles and point-set models when it
was a faster option. Müller M. et. al. [17] expanded the
definition of a splat with clipping lines to render sharp
features solely with splatting algorithm.

3. MESH SAMPLING

Our sampling algorithm is basically an improved version
of the stratified mesh sampling proposed in [19]. It first
converts meshes to voxel approximation by constructing an
octree, and then generates a sample point per voxel with
respect to a radial function. It is to overcome the drawback
that area-based uniform sampling algorithm often failed to
spread enough sample point over complex region of the
mesh [26]. With stratified sampling, we may ensure better
spatial uniformity of sampling points over the whole mesh.
Nevertheless, the original algorithm in [19] lacks of
importance criteria. Further, it doesn’t provide user with
the ability to define one’s desired sample count with
respect to a voxel approximation level. We improve these
via introducing priority during sampling and allow user to
define the number of sample points in a level.

Figure 2 is an overview of the whole sampling process. By
substituting the priority function and the distribution
function, our system may change the perspective on
importance region totally, while maintaining the spatial
uniformity. Thus it can be viewed as a framework, not just
an algorithm.

In the following sections, we use the term “leaf cell” and
Fig. 2: Overview of the sampling process

18

voxel alternatively, since they are the same in this context.
In section 3.1, we first describe how we do voxelization.
We then present our sampling algorithm and how we
define attributes of each sample point in section 3.2.

3.1 Voxel Approximation

We compute the voxel approximation of the input
triangular mesh via a top-down octree construction
algorithm like [19]. First, the axis-aligned bounding box is
computed and is taken as the root cell. Next, we
recursively divide the cell with respect to the longest
dimension, and store triangles which intersect with the cell.
To detect whether a triangle and a cell intersect, we found
that the fast triangle-box overlap testing procedure
presented by T. Akenine-Mäoller [2] is very efficient and is
easily integrated. The recursion stops whether the
user-defined depth reached or no triangle is recorded in the
cell. After the whole process terminates, each leaf cell
contains the following information:
Position: The center position of a voxel.
Dimensions: Since our cell is axis-aligned, these are
dimensions in x, y, z axis.
Triangles: Triangles which intersects with the voxel.
Priority value: As its name implies, it defines the
importance estimation of a voxel. It is computed by the
priority function pre-defined by the system. Our system
then spreads the sample points according to this value. We
use the number of un-sampled triangles as the default
priority function.

3.2 Priority-Based Stratified Sampling

After the above process, we obtain the leaves of the octree
as the voxel approximation of an input mesh. Then we
spread the user-defined amount of sample points on these
leaf cells, and assign attributes to each. In the following
paragraph, we examine each stage in detail.

Distribute sample points
Our system allows user to input the number of sample
points. We first compute the priority value of each voxel
via the priority function. Then, we reorganize these voxels
to a heap. With the help of heap, we may easily get the
voxel with the highest priority value. Since we hope each
sample point contains as much information as possible, our
strategy is to minimize the priority value of a voxel after
sampling. We then update the priority value and insert the
sampled voxel back to the heap. In this way, we may
ensure the voxel with higher priority value may produce
more sample points than lower one. After the sample count
reaches the user-specified value, the process terminates.

Assign attributes
For each point generated in the distribution phase, we first
project it onto the surface defined by the triangles recorded
in the voxel. The projected point will lie on one of the
triangle. In some rare case, it will lie on edges or vertices.
We then choose the first encountered one. Next, we
compute the barycentric coordinates of the projected point.
Finally, we interpolate the attributes with the barycentric

coordinates and get the final sample point. A sample point
may contain arbitrary information defined or derived on
the mesh. In our implementation, each sample point
contains position, normal, texture coordinates, and material
information. After sampling, we estimate the radius of each
point by constructing KNN graph [28].

4. RENDERING

Rendering a point-set model can be viewed in two different
perspectives. In the computational-geometry point of view,
the surface defined by projecting the point set to the
moving-least-square surface defined by the point set itself
will be an indefinitely differentiable surface [13], [14].
Thus, any implicit surface rendering techniques can be
applied, e.g. ray-casting algorithm. However, it seems to be
unpractical when high performance of rendering is
significant because of the cost of computing implicit
surface. In the view of signal processing, if we take the
surface attributes of the input mesh as a spatial signal, then
rendering a point-set model becomes a spatial signal
reconstruction problem. We now further discuss this
perspective.

 EWA splatting [29] is a technique with the highest
rendering quality so far in our knowledge. It is originated
from the work of Heckbert [12], which applying
elliptical-weighted-average filter for texture filtering. It
assigns an elliptical Gaussian reconstruction filter to each
splat, and convolves it with a band-limited filter, which is
called the object space EWA filter. If the band-limited filter
is again a Gaussian, then the projection on the image plane
is still a Gaussian, which is referred to as the image space
EWA filter. Projecting and accumulating these
reconstruction kernels on the image plane produce the final
image output. The whole process may be considered as
signal reconstruction in object space or image space. For a
complete derivation, we recommend the article by Zwicker
M. et. al. [30].

Over the past decade, the occurrence of programmable
vertex and pixel shader grab great interests on
implementing hardware-accelerated EWA splatting. Many
great works were done in facilitating of pixel shader to
rasterize EWA filter on screen space [3], [4], [5]. The point
sprite like OpenGL point [3] or NV_sprite [5] provide an
ideal way to generate enough fragments to rasterize EWA
filter. To rasterize the filter, the first step is to discard
unnecessary fragment via the inside test,

uଶ ൅ vଶ ൌ ሺ܂ܝ · ሺܙ െ ሻሻଶ܋ ൅ ሺ܂ܞ · ሺܙ െ ሻሻଶ܋ ൑ 1 ሺ1ሻ

where u and v are tangent coordinates, c is the center, and
q is the input point. With the position and the normal of the
splat, the algorithm may then rasterize the shape of the
filter correctly. However, since a point sprite is actually a
billboard aligned with image plane, depth correction is
necessary against incorrect depth occlusion artifacts.
Botsch M. and Kobbelt L. [4] first presented an
implementation with Gouroud shading quality. Phong
splatting [3] soon achieved phong shading quality by

19

associating a linear normal field with each splat. Botsch M.
et. al. [5] introduced the idea of deferred shading in EWA
splatting and improved the performance further.

Ren L. et. al. [22] proposed an object-space approach. The
idea was to render EWA filter with a quad textured with a
unit-Gaussian map. In this way, the perspective transform
is automatically accurate and is computed by hardware.
The rasterization of EWA filter also did not need any
special care since it was done by rasterizing the textured
quad. Further, it didn’t need depth correction. However, the
performance was slower than most of the screen space
approach because of the hardware constraints.

No matter object-space or screen-space approach is used, a
common issue occurs: how to blend splats contribution?
Since each EWA filter is truncated to a finite support, it is
reasonable to blend only the splats which deviate in z
direction of eye coordinates under some threshold values.
I.e. the z-test is not simply 0 or 1 anymore; it contains a
small tolerance range and thus the name “fuzzy-z test”.
Unfortunately, there is no way to implement this fuzzy-z
test directly under current graphics hardware since the
depth-stencil test stage is not yet programmable. One way
to solve this problem is to apply other visibility technique.
Layered-depth cube is a common choice and has been
widely investigated [4], [21]. The other trend is to
introduce a visibility pass to the rendering process [3], [4],
[5]. It only generates depth map. One simply “moves” it
along the viewing direction the amount of tolerance range
[22], and then the traditional depth-stencil test will behave
as fuzzy-z test.

Nevertheless, with this fuzzy-z test, rendering a scene with
triangular meshes and point-set models as individuals
becomes a tricky task. A naïve approach may be render the
point-set model in a different render target, and then merge
it back according to the depth buffer. However, depth
occlusion artifacts occur on the intersection region with
this approach. Figure 3 shows a point-set Stanford bunny
intersects to a triangular-mesh Utah teapot. These artifacts
occur because the depth value of the point-set model is
computed from the tangent plane of each splat lied on, not
from the surface itself.

Thanks for the new shader 4.0 specifications, we may
efficiently construct object-space EWA filter with geometry
shader now. We further combine the deferred shading
proposed in [5], and implement it with the new feature in
shader 4.0 which allows us to render to multiple render
targets concurrently in primitive level. We further
generalize the attribute pass to deal with depth occlusion

artifacts and texturing.

4.1 Pass 1: Visibility Pass

The main goal of this pass is to generate the depth map for
the following fuzzy-z test. We first pack the whole splat set
into a vertex buffer, and set the primitive type as point list.
The vertex shader in this pass transforms the position and
tangent coordinates to world space, and then passes the
data to the geometry shader. The geometry shader then
generates a quad corresponding to each splat, and
transforms them to the projection space, as shown in
Figure 4.

Before any draw call is made, we set the render target as
NULL. Thus we get a depth map in this pass without
affecting any previous rendering result in the framebuffer.

4.2 Pass 2: Attribute Pass

In this pass, the vertex shader transforms the position,
normal and tangent coordinates to the world space. The
geometry shader again expands the point into a quad, then
assigns desired attributes in the color channel, and sends
them to the correct render target via
SV_RenderTargetArrayIndex semantic. The depth buffer is
set NULL at the beginning and is fed as a shader resource.
In the pixel shader, we first do the inside test as equation (3)
to discard unnecessary pixels. Although it is an optional
step for object-space approach, we found that discard these
pixels may increase some performance. Next, it read depth
buffer to do fuzzy-z test. Given that a value, zb, read from
the z buffer. Since it is a value defined in the normalized
device space, we need to transform it back to the projection
space,

z ൌ
FN

F െ zୠሺF െ Nሻ ሺ2ሻ

where F stands for the far clipping plane, N stands for the
near clipping plane. We then use this value to perform the
fuzzy-z test.

After processing two tests described above, we then
render the quad with the prescribed unit Gaussian map as
alpha texture. By using the floating-point precision render
target and enabling alpha blending, surface attributes are
accumulated and blended correctly in each render target:

ሻܠሺܥ ൌ෍w୧hሺ
୧

ܠ െ ,ሻܑܠ ሻܠሺߙ ൌ෍hሺܠ െ ሻܑܠ
୧

 ሺ3ሻ

Fig. 3: The depth occlusion artifacts.

Fig. 4: The quad generated by geometry shader. The red
point is the center of the splat, and blue points are points
generated by geometry shader.

20

where x is the position, xi is the splat center, h is the
reconstruction kernel and thus the Gaussian in this paper. C
stands for the (R, G, B) channel, and ߙ stands for the
alpha channel. We then do per-pixel normalization by
dividing the color value with alpha value:

ሻܠሺܥ ൌ෍w୧
hሺܠ െ ሻܑܠ
∑ hሺܠ െ ሻ୧୧ܑܠ

 ሺ4ሻ

 In the original work of Bostch M. and Kobbelt L. [5],
they generated a color map and a normal map in this pass.
The color map was basically the blending result of the
material color and the diffuse texture. The normal map was
the blending result of normal vectors as the name described.
Here we further generalize the application of the attribute
pass to deal with texturing and eliminate depth occlusion
artifacts.

Texturing and depth correction: TexZ map
As mentioned in the first paragraph, the EWA splatting is
actually a spatial signal reconstruction process, and the
spatial signal can be any surface attributes. Since our
point-set model is obtained from sampling a triangular
mesh, we may reconstruct the parameterization of the
surface by sending the texture coordinates to the attribute
pass. Further, we may also consider the depth value of each
sample point in the projection space as a surface attribute
and reconstruct the depth value of the surface. Our current
implementation only considers 2D texture-space
parameterization; thus we may pack the 2D
parameterization and the projection-space depth value, and
render it into one render target. Since it consists of 2D
parameterizations for texturing and depth, we name it TexZ
map.

4.3 Pass 3: Shading Pass

In this pass, we take color map, normal map, depth
correction map, and any other possible attribute maps
generated in the attribute pass to compute the final result.
First, we set geometry shader and the input layout as
NULL. In vertex shader, we use the system value:
SV_Vertex_ID to generate a viewport-sized quad.

For each pixel, we first load the value from TexZ map by
screen coordinates and discard it if its alpha value is zero.
Of course, this check can be done with any attribute map.
Next, for each pixel passing the alpha test, we compute its
color value. It is basically color_value +
lighting_component, where color_value is fetched from the
diffuse map with texture coordinates in TexZ map, and the
lighting_component is computed via the normal fetched
from the normal map. All the value fetching mentioned
above uses the intrinsic function Load(). Since they are all
viewport-sized, we don’t need any filtering. After fetch the
value, we do per-pixel normalization as in [5].

Notice that we turn on the output channel to the depth
buffer in our pixel shader. Since the z value stores in the
TexZ map is in the projection space, we need to transform
it to the normalized device space before output:

zୠ ൌ
F

F െ N
൬1 െ

N
z
൰ ሺ5ሻ

Thus any following rendering techniques will then have
proper depth information of our point-set model.

5. RESULTS

Our results were measured and captured on a machine with
GeForce 8800GTX card, the version of the driver was
172.20, and the screen resolution was 1024×768. The
algorithm was implemented with DirectX SDK ver. March
2008. Our implementation achieves 16M splats/sec in
average. Note that we did not apply any LOD technique in
our experiment and thus the performance “seems to be” far
slower than those pioneer works [3], [4], [5], [29].

Stanford bunnies in Figure 1 show our texturing results.
Figure 5 shows the result of our depth correction. With
proper depth information, we may try to make a closer
interleaving scene without worries like the top row of
Figure 1 and Figure 6.

6. CONCLUSIONS AND FUTURE WORKS

In this paper, we try to investigate some of the basic
techniques of hybrid scene representation where point-set
models and triangular meshes are individuals. We name
two fundamental issues: data source of point-set model and

Fig. 5: Before/After depth correction

Fig. 6: Bunnies in grass. The scene consists of 231986
splats and 50553 triangles. Bunnies and rocks are point-set
models while grass and carrot are triangular meshes. The
scene is rendered at 55 FPS on our platform.

21

an easily-integrated rendering module. We present
priority-based stratified sampling to convert a triangular
mesh to a point set. Our priority-based sampling can be
viewed as more a framework than simply an algorithm.

We revisit the value of object-space EWA splatting. Our
current implementation rendered with a raw data set.
Integrating a LOD technique will undoubtedly boost the
performance. To not conflict with our basic principle:
easily-integrated with exist triangular mesh rendering
modules; we anticipate that a LOD technique suits for GPU,
like sequential point trees [8], will be an ideal choice.

7. REFERENCES

[1] Alexa M., Behr J., Cohen-Or D., Fleishman S., Levin

D., and Silva C. T., “Point Set Surfaces,” IEEE
Visualization, 2001.

[2] Akenine-Mäoller T., “Fast Triangle-Box Overlap
Testing.”

[3] Botsch M., Spernat M., and Kobbelt L., “Phong
Splatting,” Eurographics Symposium on Point-Based
Graphics, 2004.

[4] Botsch M., and Kobbelt L., “High-Quality
Point-Based Rendering on Modern GPUs,”
Proceedings of the 11th Pacific Conference on
Computer Graphics and Applications, 2003.

[5] Botsch M., Hornung A., Zwicker M., and Kobbelt L.,
“High-Quality Surface Splatting on Today’s GPUs,”
Eurographics Symposium on Point-Based Graphics,
2005.

[6] Chen B., and Nguyen M. X., “POP: A Hybrid Point
and Polygon Rendering System for Large Data,”
IEEE Visualization, 2001.

[7] Coconu L., and Hege H. C., “Hardware-Accelerated
Point-Based Rendering of Complex Scenes,”
Thirteenth Eurographics Workshop on Rendering,
2002.

[8] Dachsbacher C., Vogelgsang C., and Stamminger M.,
“Sequential Point Trees,” SIGGRAPH 2003.

[9] Grossman J. P. and Dally W. J., “Point Sample
Rendering,” Proceedings of Eurographics Rendering
Workshop ’98 page. 181-192, 1998.

[10] Guennebaud G., Barthe L., and Paulin M.,
“Splat/Mesh Blending, Perspective Rasterization and
Transparency for Point-Based Rendering,”
Eurographics Symposium on Point-Based Graphics,
2006.

[11] Guennebaud G., and Gross M., “Algebraic Point Set
Surfaces,” ACM SIGGRAPH, 2007.

[12] Heckbert P., “Fundamentals of Texture Mapping and
Image Warping,” Master’s Thesis, University of
California at Berkeley, Department of Electrical
Engineering and Computer Science. 1989.

[13] Levin D., The Approximation Power of Moving
Least-Squares. Mathematics of Computation, Vol. 67,
No. 224, October 1998, pages 1517-1531.

[14] Levin D., “Mesh-independent Surface Interpolation,”
Geometric Modeling for Scientific Visualization.
Springer-Verlag, 2003.

[15] Levoy M. and Whitted T., “The Use of Points as

Display Primitives,” Technical Report TR 85-022,
the University of North Carolina at Chapel Hill,
Department of Computer Science, 1985.

[16] Marroquim R., Kraus M., and Cavalcanti P. R.,
“Efficient Point-Based Rendering Using Image
Reconstruction,” Eurographics Symposium on
Point-Based Graphics, 2007.

[17] Müller M., Heidelberger B., Teschner M., and Gross
M., “Meshless Deformations Based on Shape
Matching,” ACM SIGGRAPH, 2005.

[18] Müller M., Keiser R., Nealen A., Pauly M., Gross M.,
and Alexa M., “Point Based Animation of Elastic,
Plastic, and Melting Objects,” Eurographics/ACM
SIGGRAPH Symposium on Computer Animation,
2004.

[19] Nehab D., and Shilane P., “Stratified Point Sampling
of 3D Models,” Eurographics Symposium on
Point-Based Graphics, 2004.

[20] Pauly M., Keiser R., Kobbelt L. P., and Gross M.,
“Shape Modeling with Point-Sampled Geometry,”
ACM SIGGRAPH, 2003.

[21] Pfister H., Zwicker M., Baar J., and Gross M.,”
Surfels: Surface Elements as Rendering Primitives,”
ACM SIGGRAPH, 2000.

[22] Ren L., Pfister H., and Zwicker M., “Object Space
EWA Surface Splatting: A Hardware Accelerated
Approach to High Quality Point Rendering,”
Eurographics 2002.

[23] Rusinkiewicz S., and Levoy M., “QSplat: A
Multiresolution Point Rendering System for Large
Meshes,” SIGGRAPH, 2000.

[24] Shade J., Gortler S. J., He L., and Szeliski R.,
“Layered Depth Images,” In Computer Graphics,
SIGGRAPH 98 Proceedings, pages 231-242.
Orlando, FL, July 1998.

[25] Sankaranarayanan J., Samet H., and Varshney A., “A
Fast K-Neighborhood Algorithm for Large
Point-Clouds,” Eurographics Symposium on
Point-Based Graphics, 2006.

[26] Turk G., “Generating Textures on Arbitrary Surfaces
Using Reaction-Diffusion,” Computer Graphics, Vol.
25, No. 4, July 1991.

[27] Weyrich T., Heinzle S., Aila T., Fasnacht D. B.,
Oetiker S., and Botsch M., “A Hardware Architecture
for Surface Splatting,” ACM SIGGRAPH, 2007.

[28] Wu J., and Kobbelt L., “Optimized Sub-Sampling of
Point Sets for Surface Splatting,” In Proceedings of
Eurographics 04, pages 643-652.

[29] Zwicker M., Pfister H., Baar J., and Gross M.,
“Surface Splatting,” ACM SIGGRAPH, 2001.

[30] Zwicker M., Pfister H., Baar J., and Gross M., “EWA
Splatting,” IEEE Transactions on Visualization and
Computer Graphics, Vol. 8, No. 3, July-September
2002.

22

