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ABSTRACT 
 
In this paper, we discuss two fundamental issues of hybrid 
scene representation: constructing and rendering. A hybrid 
scene consists of triangular meshes and point-set models. 
Consider the maturity of modeling techniques of triangular 
meshes, we suggest that generate a point-set model from a 
triangular mesh might be an easier and more economical 
way. We improve stratified sampling by introducing the 
concept of priority. Our method has the flexibility that one 
may easily change the importance criteria by substituting 
priority functions. While many works were devoted to 
blend rendering results of point and triangle, our work tries 
to render point-set models and triangular meshes as 
individuals. We propose a novel way to eliminate depth 
occlusion artifacts and to texture a point-set model. Finally, 
we implement our rendering algorithm with the new 
features of the shader model 4.0 and turns out to be easily 
integrated with existing rendering techniques for triangular 
meshes. 
 
Keywords: computer graphics, mesh sampling, 
object-space EWA splatting, point-based model, point set 
 

1. INTRODUCTION 
 
Point-set model is one of the most widely concerned 
geometric representations. For its conceptual simplicity, 
unstructured nature and ease of data maintenance, its 
possibilities have been extensively studied for decades.  
 
One of the most significant discussions is to combine the 
advantages of triangular mesh and point-set model. Since 
triangles can better capture the flat area and sharp features 
of a surface while points do better on the complex part, 
many works were done in mixing both representations. 
POP system [6], sequential point trees [8], and Cocunu L. 
and Hege H. C. [7] construct LOD representation and 
render triangles when it is a faster option. All these works 
blend the rendering result of triangles and of points to 
create a smooth transition. Guennebaud G. and Gross M. 
[10] further discuss the blending issues in EWA splatting 
algorithm. However, they did not consider the issues when 
blending is not desired, e.g. triangular meshes and point-set 
models are different objects. 
 
In this paper, we focus on the hybrid scene which 
triangular meshes and point-set models are individuals. We 

visit the following issues: 
 
How to construct a hybrid scene? 
Because of the long dominating history and development 
of related techniques, there are plenty of sources of 
triangular meshes. In contrast, an intuitive way to obtain a 
point-set model might be through a 3D scanner, which is 
not available all the time. Considering the popularity of 
packages of triangular mesh modeling tools, we propose 
that generating point-set models via sampling a triangular 
mesh seems to be both reasonable and economical way. In 
this paper, we propose a priority-based sampling algorithm 
to convert a triangular mesh to a point-set model. After 
sampling, we further generate the corresponding splat 
representation with a modified version of [28], since we 
render a point-set model with splatting algorithm. 
 
How to render a hybrid scene? 
In this issue, we propose several basic policies: the 
algorithm must be easily integrated to existing triangular 
mesh rendering algorithm with reasonable performance. 
Since the great work by Zwicker M., et. al. [29], EWA 

Fig. 1: Rendering results of our techniques. The top row 
shows a triangular-mesh man wearing a point-set clothes. 
The bottom row shows two Stanford bunnies with different 
textures. 
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splatting becomes one of the most popular ways to render a 
point-set model because of its superior quality. The original 
work of M. Zwicker et. al. [29] presented a software 
implementation. Many works were done to investigate the 
power of graphics hardware since then [3], [4], [5], [22]. 
Our algorithm follows the same spirits. We propose a novel 
way to implement EWA splatting based on shader model 
4.0 with DirectX 10. Consequently, our system is 
guaranteed to be easily integrated into existing triangular 
mesh rendering system. 
 
In the following sections, we first introduce related 
previous works of techniques related to point-set models in 
section 2. In section 3, we describe the sampling and the 
splat generation algorithm that we use to produce point-set 
model. Our rendering algorithm will then be described in 
section 4 in detail. Finally, we show our results and 
conclusions in chapters 5 and 6, respectively. 
 

2. RELATED WORKS 
 
Using points as primitives was first proposed by Levoy and 
Whitted [15]. Because of the development of technology of 
range scanners and the conceptual simplicity of a point, 
many works were devoted to this field since then. However, 
efficient rendering of point-set models was not possible 
until the work by Grossman J. P. and Dally W. J. [9]. They 
developed an image-space surface reconstruction algorithm 
and made a great step forward in both the rendering 
performance and quality. Later, QSplat [23] introduced 
splat with flat-shading quality and multi-resolution data 
structure to deal with massive point sets. 
 
Alexa M. et. al. [1] introduced the concept of MLS 
(moving-least-square) fitting with respect to a plane. It 
soon became the main trend of the surface definition of 
point set because of its great approximation of the surface 
and indefinitely differentiability [13], [14]. Recently, 
Guennebaud G. and Gross M. [11] suggested to define the 
surface with MLS fitting with respect to algebraic surface 
to gain more accuracy.  
 
Zwicker M. et. al. [29] presented a pure software 
implementation of EWA(elliptical-weighted-average) 
splatting and achieved superior rendering quality and 
handled transparency correctly. Many works were then 
devoted to develop an efficient way to implement EWA 
splatting on graphics hardware [3], [4, [5, [22]. Recently, 
Weyrich T. et. al. [27] further presented a prototype of 
graphics adapter for EWA splatting. 

 
The LOD of point-set model was also investigated for 
efficiency. QSplat [23] organized points as 
bounding-sphere hierarchy and gained a great performance 
and memory efficiency via densely encoding node 
information. For solving depth order and LOD, Zwicker M. 
et. al. [23] and Pfister H. et. al [21] first introduced 
layered-depth cube (LDC), which is basically an improved 
version of layered-depth map [24]. Dachsbacher C. et. al. 
[8] developed a LOD structure which may process and 
select level entirely on graphics adapter. 

 
Since point set may represent complex geometry efficiently 
while triangle may be a better choice for broad flat region 
and sharp features, hybrid representation of were 
investigated [6], [7], [8], [10]. They rendered and blended 
the surface color of triangles and point-set models when it 
was a faster option. Müller M. et. al. [17] expanded the 
definition of a splat with clipping lines to render sharp 
features solely with splatting algorithm. 
 

3. MESH SAMPLING 
 

Our sampling algorithm is basically an improved version 
of the stratified mesh sampling proposed in [19]. It first 
converts meshes to voxel approximation by constructing an 
octree, and then generates a sample point per voxel with 
respect to a radial function. It is to overcome the drawback 
that area-based uniform sampling algorithm often failed to 
spread enough sample point over complex region of the 
mesh [26]. With stratified sampling, we may ensure better 
spatial uniformity of sampling points over the whole mesh. 
Nevertheless, the original algorithm in [19] lacks of 
importance criteria. Further, it doesn’t provide user with 
the ability to define one’s desired sample count with 
respect to a voxel approximation level. We improve these 
via introducing priority during sampling and allow user to 
define the number of sample points in a level. 

  
Figure 2 is an overview of the whole sampling process. By 
substituting the priority function and the distribution 
function, our system may change the perspective on 
importance region totally, while maintaining the spatial 
uniformity. Thus it can be viewed as a framework, not just 
an algorithm. 
 

In the following sections, we use the term “leaf cell” and 
Fig. 2: Overview of the sampling process 
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voxel alternatively, since they are the same in this context. 
In section 3.1, we first describe how we do voxelization. 
We then present our sampling algorithm and how we 
define attributes of each sample point in section 3.2.  
 
3.1 Voxel Approximation 
 
We compute the voxel approximation of the input 
triangular mesh via a top-down octree construction 
algorithm like [19]. First, the axis-aligned bounding box is 
computed and is taken as the root cell. Next, we 
recursively divide the cell with respect to the longest 
dimension, and store triangles which intersect with the cell. 
To detect whether a triangle and a cell intersect, we found 
that the fast triangle-box overlap testing procedure 
presented by T. Akenine-Mäoller [2] is very efficient and is 
easily integrated. The recursion stops whether the 
user-defined depth reached or no triangle is recorded in the 
cell. After the whole process terminates, each leaf cell 
contains the following information: 
Position: The center position of a voxel. 
Dimensions: Since our cell is axis-aligned, these are 
dimensions in x, y, z axis. 
Triangles: Triangles which intersects with the voxel. 
Priority value: As its name implies, it defines the 
importance estimation of a voxel. It is computed by the 
priority function pre-defined by the system. Our system 
then spreads the sample points according to this value. We 
use the number of un-sampled triangles as the default 
priority function. 
 
3.2 Priority-Based Stratified Sampling 
 
After the above process, we obtain the leaves of the octree 
as the voxel approximation of an input mesh. Then we 
spread the user-defined amount of sample points on these 
leaf cells, and assign attributes to each. In the following 
paragraph, we examine each stage in detail. 
 
Distribute sample points 
Our system allows user to input the number of sample 
points. We first compute the priority value of each voxel 
via the priority function. Then, we reorganize these voxels 
to a heap. With the help of heap, we may easily get the 
voxel with the highest priority value. Since we hope each 
sample point contains as much information as possible, our 
strategy is to minimize the priority value of a voxel after 
sampling. We then update the priority value and insert the 
sampled voxel back to the heap. In this way, we may 
ensure the voxel with higher priority value may produce 
more sample points than lower one. After the sample count 
reaches the user-specified value, the process terminates. 
 
Assign attributes 
For each point generated in the distribution phase, we first 
project it onto the surface defined by the triangles recorded 
in the voxel. The projected point will lie on one of the 
triangle. In some rare case, it will lie on edges or vertices. 
We then choose the first encountered one. Next, we 
compute the barycentric coordinates of the projected point. 
Finally, we interpolate the attributes with the barycentric 

coordinates and get the final sample point. A sample point 
may contain arbitrary information defined or derived on 
the mesh. In our implementation, each sample point 
contains position, normal, texture coordinates, and material 
information. After sampling, we estimate the radius of each 
point by constructing KNN graph [28]. 
 

4. RENDERING 
 
Rendering a point-set model can be viewed in two different 
perspectives. In the computational-geometry point of view, 
the surface defined by projecting the point set to the 
moving-least-square surface defined by the point set itself 
will be an indefinitely differentiable surface [13], [14]. 
Thus, any implicit surface rendering techniques can be 
applied, e.g. ray-casting algorithm. However, it seems to be 
unpractical when high performance of rendering is 
significant because of the cost of computing implicit 
surface. In the view of signal processing, if we take the 
surface attributes of the input mesh as a spatial signal, then 
rendering a point-set model becomes a spatial signal 
reconstruction problem. We now further discuss this 
perspective. 
 
 EWA splatting [29] is a technique with the highest 
rendering quality so far in our knowledge. It is originated 
from the work of Heckbert [12], which applying 
elliptical-weighted-average filter for texture filtering. It 
assigns an elliptical Gaussian reconstruction filter to each 
splat, and convolves it with a band-limited filter, which is 
called the object space EWA filter. If the band-limited filter 
is again a Gaussian, then the projection on the image plane 
is still a Gaussian, which is referred to as the image space 
EWA filter. Projecting and accumulating these 
reconstruction kernels on the image plane produce the final 
image output. The whole process may be considered as 
signal reconstruction in object space or image space. For a 
complete derivation, we recommend the article by Zwicker 
M. et. al. [30]. 
 
Over the past decade, the occurrence of programmable 
vertex and pixel shader grab great interests on 
implementing hardware-accelerated EWA splatting. Many 
great works were done in facilitating of pixel shader to 
rasterize EWA filter on screen space [3], [4], [5]. The point 
sprite like OpenGL point [3] or NV_sprite [5] provide an 
ideal way to generate enough fragments to rasterize EWA 
filter. To rasterize the filter, the first step is to discard 
unnecessary fragment via the inside test, 
 
uଶ ൅ vଶ ൌ ሺ܂ܝ · ሺܙ െ ሻሻଶ܋ ൅ ሺ܂ܞ · ሺܙ െ ሻሻଶ܋  ൑ 1         ሺ1ሻ 
 
where u and v are tangent coordinates, c is the center, and 
q is the input point. With the position and the normal of the 
splat, the algorithm may then rasterize the shape of the 
filter correctly. However, since a point sprite is actually a 
billboard aligned with image plane, depth correction is 
necessary against incorrect depth occlusion artifacts. 
Botsch M. and Kobbelt L. [4] first presented an 
implementation with Gouroud shading quality. Phong 
splatting [3] soon achieved phong shading quality by 
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associating a linear normal field with each splat. Botsch M. 
et. al. [5] introduced the idea of deferred shading in EWA 
splatting and improved the performance further. 
 
Ren L. et. al. [22] proposed an object-space approach. The 
idea was to render EWA filter with a quad textured with a 
unit-Gaussian map. In this way, the perspective transform 
is automatically accurate and is computed by hardware. 
The rasterization of EWA filter also did not need any 
special care since it was done by rasterizing the textured 
quad. Further, it didn’t need depth correction. However, the 
performance was slower than most of the screen space 
approach because of the hardware constraints.  

 
No matter object-space or screen-space approach is used, a 
common issue occurs: how to blend splats contribution? 
Since each EWA filter is truncated to a finite support, it is 
reasonable to blend only the splats which deviate in z 
direction of eye coordinates under some threshold values. 
I.e. the z-test is not simply 0 or 1 anymore; it contains a 
small tolerance range and thus the name “fuzzy-z test”. 
Unfortunately, there is no way to implement this fuzzy-z 
test directly under current graphics hardware since the 
depth-stencil test stage is not yet programmable. One way 
to solve this problem is to apply other visibility technique. 
Layered-depth cube is a common choice and has been 
widely investigated [4], [21]. The other trend is to 
introduce a visibility pass to the rendering process [3], [4], 
[5]. It only generates depth map. One simply “moves” it 
along the viewing direction the amount of tolerance range 
[22], and then the traditional depth-stencil test will behave 
as fuzzy-z test. 
 
Nevertheless, with this fuzzy-z test, rendering a scene with 
triangular meshes and point-set models as individuals 
becomes a tricky task. A naïve approach may be render the 
point-set model in a different render target, and then merge 
it back according to the depth buffer. However, depth 
occlusion artifacts occur on the intersection region with 
this approach. Figure 3 shows a point-set Stanford bunny 
intersects to a triangular-mesh Utah teapot. These artifacts 
occur because the depth value of the point-set model is 
computed from the tangent plane of each splat lied on, not 
from the surface itself.  

 
Thanks for the new shader 4.0 specifications, we may 
efficiently construct object-space EWA filter with geometry 
shader now. We further combine the deferred shading 
proposed in [5], and implement it with the new feature in 
shader 4.0 which allows us to render to multiple render 
targets concurrently in primitive level. We further 
generalize the attribute pass to deal with depth occlusion 

artifacts and texturing. 
 
4.1 Pass 1: Visibility Pass 
 
The main goal of this pass is to generate the depth map for 
the following fuzzy-z test. We first pack the whole splat set 
into a vertex buffer, and set the primitive type as point list. 
The vertex shader in this pass transforms the position and 
tangent coordinates to world space, and then passes the 
data to the geometry shader. The geometry shader then 
generates a quad corresponding to each splat, and 
transforms them to the projection space, as shown in 
Figure 4. 

Before any draw call is made, we set the render target as 
NULL. Thus we get a depth map in this pass without 
affecting any previous rendering result in the framebuffer. 
 
4.2 Pass 2: Attribute Pass 
 
In this pass, the vertex shader transforms the position, 
normal and tangent coordinates to the world space. The 
geometry shader again expands the point into a quad, then 
assigns desired attributes in the color channel, and sends 
them to the correct render target via 
SV_RenderTargetArrayIndex semantic. The depth buffer is 
set NULL at the beginning and is fed as a shader resource. 
In the pixel shader, we first do the inside test as equation (3) 
to discard unnecessary pixels. Although it is an optional 
step for object-space approach, we found that discard these 
pixels may increase some performance. Next, it read depth 
buffer to do fuzzy-z test. Given that a value, zb, read from 
the z buffer. Since it is a value defined in the normalized 
device space, we need to transform it back to the projection 
space,  

z ൌ  
FN

F െ zୠሺF െ Nሻ                                                      ሺ2ሻ 

where F stands for the far clipping plane, N stands for the 
near clipping plane. We then use this value to perform the 
fuzzy-z test.  
 

After processing two tests described above, we then 
render the quad with the prescribed unit Gaussian map as 
alpha texture. By using the floating-point precision render 
target and enabling alpha blending, surface attributes are 
accumulated and blended correctly in each render target: 

ሻܠሺܥ ൌ෍w୧hሺ
୧

ܠ െ ,ሻܑܠ ሻܠሺߙ ൌ෍hሺܠ െ ሻܑܠ
୧

   ሺ3ሻ 

Fig. 3: The depth occlusion artifacts. 

Fig. 4: The quad generated by geometry shader. The red
point is the center of the splat, and blue points are points
generated by geometry shader. 
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where x is the position, xi is the splat center, h is the 
reconstruction kernel and thus the Gaussian in this paper. C 
stands for the (R, G, B) channel, and ߙ stands for the 
alpha channel. We then do per-pixel normalization by 
dividing the color value with alpha value: 

ሻܠሺܥ ൌ෍w୧
hሺܠ െ ሻܑܠ
∑ hሺܠ െ ሻ୧୧ܑܠ

                                        ሺ4ሻ 

 In the original work of Bostch M. and Kobbelt L. [5], 
they generated a color map and a normal map in this pass. 
The color map was basically the blending result of the 
material color and the diffuse texture. The normal map was 
the blending result of normal vectors as the name described. 
Here we further generalize the application of the attribute 
pass to deal with texturing and eliminate depth occlusion 
artifacts. 
 
Texturing and depth correction: TexZ map 
As mentioned in the first paragraph, the EWA splatting is 
actually a spatial signal reconstruction process, and the 
spatial signal can be any surface attributes. Since our 
point-set model is obtained from sampling a triangular 
mesh, we may reconstruct the parameterization of the 
surface by sending the texture coordinates to the attribute 
pass. Further, we may also consider the depth value of each 
sample point in the projection space as a surface attribute 
and reconstruct the depth value of the surface. Our current 
implementation only considers 2D texture-space 
parameterization; thus we may pack the 2D 
parameterization and the projection-space depth value, and 
render it into one render target. Since it consists of 2D 
parameterizations for texturing and depth, we name it TexZ 
map. 
 
4.3 Pass 3: Shading Pass 
 
In this pass, we take color map, normal map, depth 
correction map, and any other possible attribute maps 
generated in the attribute pass to compute the final result. 
First, we set geometry shader and the input layout as 
NULL. In vertex shader, we use the system value: 
SV_Vertex_ID to generate a viewport-sized quad.  

 
For each pixel, we first load the value from TexZ map by 
screen coordinates and discard it if its alpha value is zero. 
Of course, this check can be done with any attribute map. 
Next, for each pixel passing the alpha test, we compute its 
color value. It is basically color_value + 
lighting_component, where color_value is fetched from the 
diffuse map with texture coordinates in TexZ map, and the 
lighting_component is computed via the normal fetched 
from the normal map. All the value fetching mentioned 
above uses the intrinsic function Load(). Since they are all 
viewport-sized, we don’t need any filtering. After fetch the 
value, we do per-pixel normalization as in [5]. 
 
Notice that we turn on the output channel to the depth 
buffer in our pixel shader. Since the z value stores in the 
TexZ map is in the projection space, we need to transform 
it to the normalized device space before output: 

zୠ ൌ
F

F െ N
൬1 െ

N
z
൰                                                     ሺ5ሻ 

Thus any following rendering techniques will then have 
proper depth information of our point-set model. 
 

5. RESULTS 
 
Our results were measured and captured on a machine with 
GeForce 8800GTX card, the version of the driver was 
172.20, and the screen resolution was 1024×768. The 
algorithm was implemented with DirectX SDK ver. March 
2008. Our implementation achieves 16M splats/sec in 
average. Note that we did not apply any LOD technique in 
our experiment and thus the performance “seems to be” far 
slower than those pioneer works [3], [4], [5], [29]. 
 
Stanford bunnies in Figure 1 show our texturing results. 
Figure 5 shows the result of our depth correction. With 
proper depth information, we may try to make a closer 
interleaving scene without worries like the top row of 
Figure 1 and Figure 6. 
 

 
6. CONCLUSIONS AND FUTURE WORKS 

 
In this paper, we try to investigate some of the basic 
techniques of hybrid scene representation where point-set 
models and triangular meshes are individuals. We name 
two fundamental issues: data source of point-set model and 

Fig. 5: Before/After depth correction 

Fig. 6: Bunnies in grass. The scene consists of 231986 
splats and 50553 triangles. Bunnies and rocks are point-set 
models while grass and carrot are triangular meshes. The 
scene is rendered at 55 FPS on our platform. 
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an easily-integrated rendering module. We present 
priority-based stratified sampling to convert a triangular 
mesh to a point set. Our priority-based sampling can be 
viewed as more a framework than simply an algorithm.  
 
We revisit the value of object-space EWA splatting. Our 
current implementation rendered with a raw data set. 
Integrating a LOD technique will undoubtedly boost the 
performance. To not conflict with our basic principle: 
easily-integrated with exist triangular mesh rendering 
modules; we anticipate that a LOD technique suits for GPU, 
like sequential point trees [8], will be an ideal choice. 
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