무릎 관절 모멘트 추정을 위한 실험장치 설계 및 제작

Designing and Fabricating The Equipment for Estimating Knee Joint Moment **최한순¹, 엄현우¹, 조장환², 남윤수³

*#H. S. Choi(hansoony21@naver.com)¹, H. W. Uhm¹, J. H. Cho², Y. S. Nam³

¹ 강원대학교 대학원 메카트로닉스전공, ² 강원대학교 메카트로닉스전공, ³강원대학교 공과대학 기계·메카트로닉스공학부 Key words: Knee joint moment, Estimation, EMG

1. 서론

현대 의학은 수년간 많은 발전을 이루었다. 이에 따라 사회는 급격한 속도로 노령화 사회로 가고 있으며 이들의 생활을 보조할 의용공학분야 역시 많은 연구와 개발이 이 루어 지고 있다. 노약자의 보행이나 근골격계 장애가 있는 사람들의 일상생활에서의 동작에 근력을 보조해 주는 보조 기와 건설현장에서 근로자들의 작업 중 작업 능률의 향상 과 부상 방지를 위해 근력을 강화시켜주는 보조기 등 다양 한 분야에서 연구들이 진행되고 있다.

본 연구은 이러한 연구 중에서 인간의 보행을 보조할수 있는 기구를 제작하기 위한 기본 연구로 그중에서도 근전도(Electromyography, EMG)신호를 이용한 외골격형 무릎관절 보조기구의 제작를 목표로 한다. 이 보조기구를 자연스럽고 정확하게 작동시키기 위해서는 인간의 다리근육,그 중에서도 무릎 관절에서 생성되는 모멘트를 정확하게 예측하여 보조기구를 제어해야 한다. 이러한 사용자의 운동의도를 제대로 파악하기 위하여 본 연구에 앞서 CONTREX MJ system을 사용하여 무릎의 각도에 관계없이 모든근육이 MVC(maximum voluntary contraction)상태라고 가정한후 하지 운동 근육의 근전도 신호와 토크를 측정하였으며이를 바탕으로 무릎 관절 모멘트에 큰 영향을 미치는 근육길이와 모멘트암을 추정하고 최적화 하는 과정을 수행 하였다.

따라서 본 논문에서는 앞선 연구를 통하여 얻은 결과와 인체의 운동 정보로부터 동역학적인 해석을 통하여 관절의 모멘트를 추정하여 비교 분석하고, 보다 동적인 운동에서 의 무릎 관절 모멘트를 구하기 위한 실험장치를 제작하는 문제에 관하여 논하고자하며 실험을 위하여 사용된 장치는 시중에 판매되고 있는 운동기구를 기초로 하였다.

2. 수학적 모델링

실험장치의 설계에 앞서 무릎 관절의 움직임에 의한 모멘트를 수학적인 해석을 통하여 다음과 같이 간략히 표 현할 수 있다.

$$\tau_{mus} = M_G g l \sin \theta + I_{leg} \ddot{\theta} + FL$$

$$I_{leg} = I_G + M_G l^2 \tag{1}$$

 au_{mus} 는 무릎 관절의 회전에 작용하는 토크값, 즉 무릎 관절에 작용하는 근육들이 내는 힘을 나타내며 이 토크는 크게 세가지 성분으로 분류 될 수 있다. 하지 질량이 중력에 의해 받는 모멘트와 하지 질량이 갖는 관성에 의한 모멘트, 마지막으로 근육이 내는 힘에 의해 생성되는 모멘트를 들 수 있다. M_G , I_{leg} , I, L는 인체측정학적인 데이터[1]를 통하여 유추해 낼수 있는 값으로 각각 다리의 무

Table. 1 Anthropometric Data

Segment	Definition	Segment Weight/ Total Body Weight	Center of Mass/ Segment Length Proximal
Foot and leg	Femoral condyles/ medial malleolus	0.061M	0.606

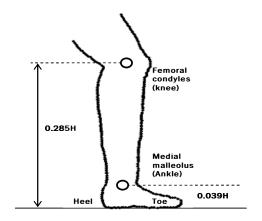


Fig. 1 Leg segment lengths expressed as a fraction of body height H.

게 중심에서의 질량, 무게 중심에서의 질량관성모멘트, 무릎에서 다리 무게 중심까지의 거리, 다리의 길이를 나타내며 Table. 1과 Fig.1에 몸무게와 신장의 비율로 표시되어 있다.

따라서 앞의 식 (1)에서 실험을 통하여 무릎의 회전 각도heta, 무릎의 움직임에 따른 각가속도 heta, 다리가 장치에 작용하는 힘 F를 측정하면 무릎 관절에 작용하는 모멘트 au_{mus} 를 구할 수 있다.

$$\sum F = T - M_c g = M_c \ddot{h} \qquad \begin{cases} h = r\theta \\ \dot{h} = r\dot{\theta} \end{cases}$$

$$T = M_c \ddot{h} + M_c g \qquad \begin{cases} \ddot{h} = r\dot{\theta} \\ \ddot{h} = r\ddot{\theta} \end{cases}$$

$$(2)$$

$$I_o \ddot{\theta} + Tr = FL \qquad I_o = \frac{1}{2} M_o r^2 \tag{3}$$

힘 F는 작용반작용의 법칙에 의하여 사람이 기구를 미는 힘과 동일한 힘으로 실험 장치에서 반발력으로 작용하게 되며 이 힘은 장치의 와이어와 연결되어 추를 움직이게 된다. 여기서 사용된 와이어는 인장이나 압축이 없다고 가정하면 다리의 움직임과 장치의 움직임이 선형적인 관계

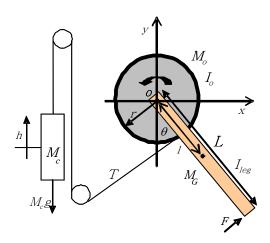


Fig. 2 Modeling of systems

를 유지함을 알 수 있다. 또한 방향 전환을 위해 사용한 도르레 역시 미 μ 럼이 없다고 가정한 경우 장치의 움직임은 식 (2), (3)의 수식으로 표현 될 수 있다. M_c , M_o 는 사용된 모델에서의 추의 질량과 회전하는 원판의 질량이며 I_o 는 원판의 질량 관성 모멘트, r은 반지름이다.

 θ , θ , h 를 측정하면 식 (1)의 모든 변수들을 알고 있는 것이다. 그러므로 측정된 값들을 식 (2), (3)에 적용하여 와이어의 장력 T, 장치의 원판 중심에서의 질량관성 모멘트 I_o 를 구하면 사람이 장치에 가하는 모멘트 FL을 알 수 있으며 결과적으로 무릎 관절 모멘트를 추정할 수 있다.

3. Designing and Fabricating

무릎 관절 모멘트를 추정하기 위해서는 앞서 설명한 바와 같이 θ , θ , 그리고 추의 움직인 거리 h를 측정하여야 한다. 여기서 각각의 변수들은 서로 연관이 있음을 알수 있다. 다시 말해서 무릎의 회전 각도를 알고 있거나 추의 이동 거리를 안다면 식 (2)의 변위, 속도, 가속도 관계를 통하여 τ_{mus} 를 계산할 수 있는 것이다. 이것은 곧 하나의 파라미터만 측정하여도 수학적인 계산을 완료할 수 있다는 것을 의미한다. 하지만 본 실험에서는 보다 정확한 결과를 얻기 위하여 각각의 변수들을 따로 측정하여 오차를 줄이는 방식을 채택하였다.

첫 번째 변수 \emph{h} 를 측정하기 위하여 사용한 와이어 방 식의 변위센서(SP2)는 무릎의 움직임이 인장이나 압축이 없는 와이어에 그대로 전달 되기 때문에 와이어의 움직임 을 측정함으로써 구할 수 있다. 무릎의 회전을 최대로 했 을 경우 와이어의 끝단에 연결된 추의 변위가 600mm 내외 로 상하운동을 한다. 이 변위센서는 약 7oz. 의 tension 을 갖는 센서로서 와이어와 동일한 운동을 하도록 결속하고 직선 운동을 하는 구간에 설치한다. 두 번째 heta는 Flexion, extension 운동을 할 경우 실험자의 자세에 따라 최대 270° 정도의 각도로 움직이기 때문에 340° ±3°의 작동범 위를 갖는 포텐시오미터를 선정하였다. 포텐시오미터는 축 의 회전에 따라 내부의 가변저항값이 변하면서 전압을 출 력한다. 마지막으로 가속도계(ADXL105)를 이용하여 가속 도 heta 를 측정한다. ADXL105 는 monolithic IC Chip 으로써 내부에 ±5g single Axis 의 가속도를 측정할 수 있는 센서와 증폭을 위한 Amplifier 를 내장하고 있으며 250mV/g 의 sensitivity 를 갖는다.

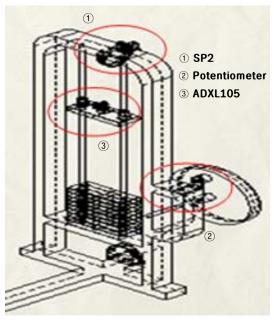


Fig. 3 General drawing of equipment

3. 결론

근전도 신호를 이용하여 무릎 관절 모멘트를 추정하는 문제는 매우 어려운 일이면서도 기본적인 과제이다. 외골 격형 무릎 관절 보조기구를 제어하기 위해서는 무릎의 움 직임에 따른 근육들의 근전도 신호를 통해 각 개인의 인체 특성을 올바르게 파악하고 사용자의 운동의도에 맞는 정확 한 모멘트를 적용시켜 주어야 하기 때문이다. 따라서 본 연구에서는 동역학적인 방법을 통하여 실제 운동에서의 모 멘트를 추정하고 근전도 신호를 실시간으로 확인하여 비교 할 수 있는 방법을 제안하였으며 향후 근전도 신호를 이용 한 무릎 관절 모멘트 추정에 필요한 실험 데이터로 활용하 여 연구를 진행 할 것이다.

후기

이 연구는 한국과학재단의 지원을 받아 이루어졌습니다 (R01-2008-000-20375-0).

참고문헌

- Winter, D. A., Biomechanics and motor control of human movement, 3rd Ed, John Wiley & Sons, 2005
- William, F. R., Leroy, D. S., Engineering mechanics: Dynamics, 2nd Ed, John Wiley & sons, 1996