나노은입자 어레이 패턴을 이용한 표면플라즈몬 발광효과 LSPR-coupled Emission Effects based on Dewetted Nanosilver Aggregates ^{*박성제¹, *이순원¹, #최준혁¹, 정소희², 이지혜¹, 최대근¹}

*S.J.Park¹, S.W.Lee¹, [#]J. H. Choi (junhyuk@kimm.re.kr)¹, S.H.Jeong¹, J.H.Lee¹, D.G.Choi¹

¹한국기계연구원 나노융합기술연구본부

Key words : Nanosilver colloid, Localized surface plasmon, Light emission, Colloid thin film, Aggregates

1. 서론

외부광조사가 금속표면에 인가되었을 시, 광전자기파 의 전기장은 금속표면상의 전자들과 결합하여 전자들의 집단적 거동을 일으키게 되는 표면플라즈몬 현상이 발생 한다. 이러한 표면플라즈몬파 (Surface Plasmon Polariton) 은, 특정파장의 빛이 특정각도에서 조사 시 입사광과 표면플라즈몬파의 모멘텀이 일치하는 공명현상 이 발생 (SPR) 하여, 대부분의 입사 광에너지가 자유전자 로 전이되어 금속표면에서 대부분 복사 또는 열의 형태로 흡수되게 된다. 사용되는 금속박막은 외부자극에 의해 전자방출이 쉽고, 음의 유전상수를 갖는 금속들 (Au, Ag, Cu, Al)을 주로 사용하며 그 중 가장 예리한 SPR 공명피크 를 보이는 Ag와 우수한 표면안정성을 갖는 Au가 주로 사용된다.

Surface Plasmon Resonance은 금속나노점 또는 규칙 적으로 배열된 나노금속패턴 기판상에 광입사 시 연속금 속표면에 비해 입사하는 빛의 흡수와 산란이 보다 효과적 으로 결국 나노구조 주변에서 크게 증폭된 필드를 형성하 게 된다. 또한, 표면플라즈몬의 면상 광전파 손실을 줄이고 금속나노패턴간 상호작용효과를 얻을 수 있어 적용제품에 따라서는 훨씬 이상적인 접근방식이다. 금속나노패턴에 표면플라즈몬 공명이 집속되는 국소표면플라즈몬공명현 상 (LSPR) 은, 나노구조의 모양 크기 그리고 분포형태에 따라 특성이 변화하며 센서의 경우 10배 이상 감도가 향상되는 결과가 보고된바 있다 [1,2]. 나노금속구조에 따른 LSPR 현상에 관한 리뷰논문이 Zhang 등에 의해 최근 발표된 바 있다 [3].

국소표면플라즈몬을 유도하기 위한 금속나노패턴 어례 이 제작방법으로는, 전자빔리소그래피를 이용한 방법, FIB 등을 이용한 직접가공방법, 나노임프린트를 이용한 방법[4], 광간섭리소그래피 후 RIE 식각방법 [5] 등의 탑다운 방식이 있으며, 바텀업 방식으로 나노은입자의 자기조립으로 [6] 또는 나노은박막에서 나노은섬 (Nanosilver Islands) 를 유도하는 방식으로[7-8], LSPR 효과를 응용한 결과가 최근에 발표된바 있다. 특히 나노은 박막에서 격리된 비정형의 나노패턴 어레이는 박막의 온 도를 일정 온도 이상으로 높이는 경우, 금속이 녹으면서 에너지 준위가 낮은 형태로 형상이 재구성되는 Oswalding Ripening 원리를 이용한 방법이다. Oswald ripening 원리 에 의한 Ag 입자의 자기조립공정 원리와 결과는, 별도의 학술논문에서 보고된바 있다 [9-10].

기존의 Oswalding ripening에 의한 금속나노구조 어례 이 형성방법은 300℃이상의 고온 환경을 요구할 뿐 만 아니라 격리된 패턴크기와 형상을 제어하는데 한계가 따 를 수밖에 없다. 이를 개선하기 위한 방법으로 본 연구에서 는 나노은입자의 Sintering이 나타나는 최저온도에서 나노 은패턴 어례이를 제작하는 방법을 고안하였다. 나노은입 자 잉크 적용을 통해, 박막에서 격리되는 메커니즘이 아닌 입자간 뭉쳐지는 현상을 이용한 것으로 농도와 온도설정 을 통해 크기 제어가 다소 용이하며, 형상은 입자원형을 유지하는 결과를 얻었다. 공정 조건에 따라 얻어지는 나노 은패턴 어례이는 UV-Visible 흡수율 측정을 통해 shift 되는 결과를 얻어 발광체 물질의 Coupling Efficiency 개선 이 기대된다.

2.실험

국소표면플라즈몬공명현상 유도를 위한 나노은섬 (Ag Islands) 의 제조를 위해, 적절한 농도의 나노은콜로이드 잉크 (ANP Inc. DGH 55LT) 를 스핀코팅하고 이를 열처리 하였다. 사용한 As-processed colloid 크기는 대략 30~50nm 수준이며, 주어진 경화온도는 약 200℃ 이상이 며, Xylene 등의 비극성 용매에 분산되어 있는 것이 특징이 다. 실험을 위해 기판은 Sodalime glass를 나노스트립(Nanostrip)으로 친수성 처리를 한 후 IPA(Isopropyl alcohol)로 세척하여 준비하였다.

기판 상 Ag Islands 어레이를 형성한 후 형광물질을 도포하기 전 spacer의 형성이 필요하며, 이 단계에서는 SiO₂ 절연막을 수 십나노 두께로 증착하였다 (나노종합팹 센터, Novellus PECVD). 본 연구 범위에는, SiO₂ spacer 상에 형광물질 도포와 결과적인 발광효율과 Ag LSPR-CE (coupled emission) 상관관계 분석 단계는 포함되지 않았 으며, 대신 Ag Islands 어레이 증착 조건에 따른 기판의 흡광도 및 파장 전이를 측정 분석 (Sinco co. SD-1000 UV-vis spectrophotometer) 에 중점을 두어 간접적인 LSPR-CE 효과를 시사하고자 하였다.

3.결과

본 연구에서는 Ag 입자의 농도를 1, 3, 5wt%로 구분하 여 Spin coat (4,000rpm) 하였으며, 열처리 온도는 150~250℃ 범위에서 설정하여 NCP (non-close packed) Ag islands 어레이를 형성하였다 (그림 1).

그림 1. 농도변화에 따른 Ag Coalesced Islands 크기 변화 1wt% (상-a), 3wt% (중-b), 5wt%(하-c)

그림 1에서의 결과는 비교적 램덤한 어레이 형성하고 있으나, 1wt% 농도에서 50nm 내외 스케일인 반면 5wt% 에서 약 80nm 이상의 크기로 증가하였음을 알 수 있으며, 패턴 형상 역시 원형에서 농도가 증가 할수록 타원형 등 비 규칙적 형상으로 변화하고 있음이 확인할 수 있다. 그림 2과 3은 Ag 농도(그림 1 참조) 및 SiO₂ spacer 두께 변화에 따른 흡광도 및 파장변화의 차이를 보여주고 있다. Ag 1wt%에서 흡수파장 피크가 465nm인데 반해, 3wt%에서 5wt%로 증가함에 따라 각각 489nm, 500nm 로 이동 (red-shift) 하고 있다. 이는 Ag Islands 크기 증가에 따른 결과임을 알 수 있다. 그림 3은 SiO₂ spacer 두께와 흡광도 상관관계이며, 본 결과는 추후 발광층 증착 시 Quenching이 발생하지 않는 범위 내에서 Spacer 박막 의 두께는 얇게 가는 것이 이상적임을 시사해 주고 있다.

그림 2. 농도변화에 따른 Ag nanostructure의 흡광도

그림 3. 절연막 두께에 따른 Ag nanostructure의 흡광도

4. 결론

국소표면플라즈몬공명현상을 일으키기 위한 Ag islands을 형성하는 방법을 본 연구에서는 기존의 진공증착 방식이 아닌 습식 방법으로 증착하였을 뿐만 아니라 NCP(Non-close packed) Ag islands array 형성을 위한 열처리 온도도 진공증착 시 300℃이상에서 거쳐야 하지만 습식 공정을 사용해 경화온도 범위 내인 150~250℃에서 나노은섬 형성이 가능하였다.

본 연구는 추후 생체감지용센서, 발광디스플레이소자, 광흡수소자등 표면플라즈몬공명현상과 국소표면플라즈 몬공명현상이 소자의 특성 향상 기여될 것으로 예상된다.

후기

본 연구는 교육과학기술부 프론티어연구개발 사업-나 노메카트로닉스기술개발사업 (08K1401-00511) 의 지 원으로 수행되었습니다.

참고문헌

- Lyon, L.A., Pena, D.J. and Natan, M.J. "Surface Plasmon Resonance of Au-colloid-modified Au Films: Particle Size Dependence," J. Phys. Chem. B. 103, 5826-5831, 1999.
- He, L., Musick, M.D., Nicewarner, S.R., Salinas, F.G., Benkovic, S.J., Natan, M.J., and Keating, C.D. "Colloidal Au-enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization," J. Am. Chem. Soc. 122, 9071-9077, 2000.
- Zhang, J.Z., Noguez, C. "Plasmonic Optical Properties and Applications of Metal Nanostructures," Plasmonics 3, 127-150, 2008.
- Matsushita, T., Nishikawa, T., Yamashita, H., Nakamura, M., Hasui, R. and Aoyama, S. "New Localized Sufrace Plasmon Resonance Sensor utilizing Nanoimprinting Technology," NSTI-Nanotech. 1, 58-61, 2006.
- Feng, J. and Okamoto, T. "Enhancement of Electroluminescence through a Two-dimensional Corrugated Metal Film by Grating induced Surface-Plamsma Cross-coupling," 30, 23-22304, 2005.
- Chowdhury, M.H., Ray, K., Geddes, C.D. and Lakowicz, J.R. "Use of Silver Nanoparticles to Enhance Surface Plasmon-Coupled Emission (SPCE)," Chem. Phys. Lett. 452, 162-167, 2008.
- Yeh, D.M., Huang, C.F., Chen, C.Y., Lu, Y.C. and Yang, C.C. "Localized Surface Plasmon-induced Emission Enhancement of a Green Light-Emitting Diode," Nanotechnology 19, 345201, 2008.
- Kwon, M.K., Kim, J.Y., Kim, B.H., Park, I.K., Cho, C.Y., Byeon, C.C. and Park, S.J. "Surface Plasmon-enhanced Light-Emitting Diodes," Adv. Mater. 20, 1253-1257, 2008.
- Sharma, P., Liu, C.Y. and Hsu, C.F. "Ordered Arrays of Ag Nanoparticles grown by Constrained Self-Organization," Appl. Phys. Lett. 89, 163110, 2006.
- Chou, K.S., Huang, K.C. and Lee, H.H. "Fabrication and Sintering Effect on the Morphologies and Conductivity of Nano-Ag particle Films by the Spin Coating Method," Nanotechnology 16, 779-784, 2007.