레이저 가공을 이용한 형상기억합금 박막 마이크로 액추에이터 제조 Manufacturing of Shape Memory Alloys(SMA) Sheet Micro actuator using Laser Machining

*김승원¹, [#]조규진¹, 주종남¹ *S. W. Kim¹, [#]K. J. Cho(kjcho@snu.ac.kr)¹, C. N. Chu¹ ¹ 서울대학교 기계항공공학부

Key words : Shape Memory Alloys(SMA) Sheet, Micro actuator, Laser Machining, Taguchi Methods

1. 서론

마이크로 로봇의 제작에 있어 액추에이터의 선정은 로 봇의 크기와 무게, 동작 특성을 결정하는 중요한 설계 고 려사항이다. 현재 마이크로 로봇의 액추에이터 발전 방향 은 기존의 모터와 기어의 사용을 최소한으로 하고, 로봇 본체의 크기와 무게를 최소화 하는 방향으로 나아가기 위 해 초소형 액추에이터를 개발하는 추세다. 그 중에서 형상 기억합금(Shape Memory Alloys, SMA)을 이용한 액추에이터 가 마이크로 로봇 분야에서 주목을 받고 있다.

형상기억합금은 니켈(Ni)과 티타늄(Ti)을 기반으로 구성 된 합금으로 온도에 따라 원자들의 결합구조가 바뀌어 하 나의 물질에서 서로 다른 응력-변형률의 관계가 나타나는 현상을 갖는다. 이러한 특성을 이용하면 형상기억합금을 액추에이터로 활용할 수 있다. 현재 형상기억합금을 이용 한 마이크로 액추에이터의 형태는 대다수가 와이어 형상 스프링, 코일 형상 스프링, 2 차원 평면 스프링 등이 있다. Leester-Schädel, M. 등의 연구에서는 형상기억합금 박막을 가지고 레이저 가공을 통해 다양한 형상의 2 차원 평면 스 프링을 제작하여 마이크로 집게와 인공근육, 수술용 삽입 관 조절기에 사용하였다[1]. 위의 논문에서처럼 형상기억합 금 박막을 액추에이터 소재로 사용한 이유는 기존 액추에 이터보다 체적을 적게 차지하여 액추에이터로 사용하는 마 이크로 구조물의 크기를 줄일 수 있기 때문이다.

마이크로 액추에이터에 사용할 형상기억합금 박막 소재 의 2 차원 평면 스프링을 제작하려면 기존의 기계절단 방 식으로 가공하기 힘들다. 따라서 마이크로 액추에이터의 개발에는 광학절단 가공 방식으로 레이저 가공을 이용한다. 하지만 레이저 가공 또한 설계한 스프링 형상을 절단한 후 의 절단 형상을 깨끗이 하기 위해서는 다수의 연구 논문에 서 수행하고 있고 Leester-Schädel, M. 등의 연구에서처럼 가 공 후 에칭과 같은 후처리가 필요하다 [1]. 하지만 가공물 의 에칭을 통한 후처리는 절단면을 깔끔하게 만드는 대신 에 절단면을 포함한 가공 소재의 20%에 해당하는 체적이 식각되기 때문에 재료의 소모가 심한 단점이 있다. 따라서 재료의 소모 없이 레이저 가공단계에서 온전한 가공 형상 을 유지하기 위해서는 고려해야 할 요인들이 있다. 가공 대상물에 영향을 미치는 가공 조작 변인으로 레이저 출력, 레이저 절단속도, 재료 두께, 레이저 모드 등을 가지고 레 이저 가공 특성과 가공 결과물의 품질을 분석한 연구가 Mathew, Jose 등, El-Taweel, T. A. 등의 논문에서 살펴볼 수 있다 [2-3]. 이러한 가공 조작 변인들을 조절하여 얻을 수 있는 가공 품질로는 광재(Dross), 절단 폭, 열 변형 영역 (Heat affected zone, HAZ) 등을 고려할 수 있다.

따라서 본 연구의 주제는 형상기억합금 박막 소재의 마 이크로 액추에이터 스프링의 제작에 있어 레이저 가공으로 얻을 수 있는 마이크로 액추에이터의 품질과 가공 조작 변 인의 상관관계를 분석하는 것이다. 이 연구를 수행하는데 있어 실험 설계의 효율성 향상을 위해 실험 수행 계획에 Taguchi 실험계획법을 적용하였다. 이 방법을 적용하여 최 소한의 실험 자료를 가지고 가공 조작 변인과 가공 결과물 품질과의 상관관계를 도출하였다. Table 1 Typical properties of Ni-Ti shape memory alloys

<u> </u>	5 5
Properties	Description
Melting point (°C)	1,310
Density (kg/m ³)	6,500
Thermal conductivity of the Martensite (W/mK)	9
Thermal conductivity of the Austinite (W/mK)	18
Electrical resistivity ($\mu\Omega$ cm)	50-110

Table 2 Experiment	al parameters and levels
--------------------	--------------------------

Input parameter	Symbol		Level	
		-1	0	1
Power (W)	Р	7	9	11
Pulse repeat rate (kHz)	PRR	25	30	35
Cutting cycle (time)	CC	4	8	12
Cutting cycle delay time (s)	CCDT	0	10	20

2. 실험장비, 소재 및 실험방법

실험 장비로 사용한 레이저 장비는 IPG Photonics 사의 YLP-1/100/20 Ytterbium-doped 1064 nm pulsed fiber laser 로서, 장비 성능은 평균 출력이 20 W 이고 파장 폭은 100 ns, 파 장 반복속도는 20-50 kHz, 빔 품질은 M² > 1.6 이다.

가공 소재인 형상기억합금 박막은 Memory-Metalle GmbH 사 Alloy H 모델로 주요 사용 용도는 액추에이터 응 용이다. 성분비는 니켈이 약 49 % 를 차지하고 있다. 형상 기억 발현 온도범위는 95-110 ℃ 이다. 박막 두께는 50 µm 를 사용하였다. 실험에 사용한 형상기억합금 박막의 물성 치는 Table 1 과 같다.

본 실험에서는 4 가지 가공 조작 변인들을 각각 3 단계 로 나누었고 Table 2 와 같다. 4 개의 변인에 대해 각각 3 단 계로 나뉘어서 나올 수 있는 실험 모델은 총 81 개이다. 이것을 전부 실행하는 것은 실험에 소요되는 자재, 시간 비용 측면에 있어서 비효율적이다. 따라서 최소의 실험모 델로 전반적인 최적 가공 조건을 결정하기 위해, Taguchi 실 험계획법에 따라 L9(3⁴) 직교 배열표를 작성하였고 Table 3 에 명시하였다. 실험 수행에 있어 외부간섭효과를 줄이기 위해 각 모델마다 3 회씩 실험을 수행하였다.

Table 3 $L9(3^4)$ matrix for the experiments

Case	Р	PRR	CC	CCDT
1	-1	-1	-1	-1
2	-1	0	0	0
3	-1	1	1	1
4	0	-1	0	1
5	0	0	1	-1
6	0	1	-1	0
7	1	-1	1	0
8	1	0	-1	1
9	1	1	0	-1

Fig 1. Geometry of the laser cut

Table 4 Experimen	tal results an	d SN ratio
-------------------	----------------	------------

Case	Spi	ring dth	Di	ross	Cut	tting dth	Н	AZ
	WI	um			wi	uuii		
	μm	η	μm	η	μm	η	μm	η
1	177	-44.98	22	-26.67	21	-26.30	45	-32.97
2	178	-44.99	27	-28.73	26	-28.27	33	-30.27
3	180	-45.11	23	-27.18	27	-28.75	52	-34.30
4	173	-44.78	25	-28.02	20	-26.15	37	-31.33
5	148	-43.39	30	-29.64	54	-34.63	62	-3590
6	175	-44.86	19	-25.73	39	-31.82	40	-32.12
7	136	-42.67	42	-32.44	64	-36.17	100	-39.97
8	158	-43.99	17	-24.78	54	-34.70	39	-31.79
9	136	-42.69	65	-36.32	69	-36.74	82	-38.28

3. 결과 분석

실험을 수행하여 측정한 스프링 폭, 광재 폭, 절단 폭, 열 변형 영역 범위를 가공 품질로 선정하였다. 측정 기준 은 Fig.1 에 도시하였다.

총 9 가지 모델의 실험 결과를 가지고 품질 계산을 수 행할 때 망소(Smaller-the-better, SB) 기법을 가정으로 삼고, 이에 따른 SN(Signal Noise) 비를 산출하였다. 실험 모델 별 품질을 계산할 때 사용한 SN 비(n) 계산은 식 (1)을 사용 하였고, 모델 i 에 대해서 측정한 품질 값 3 개의 평균을 $\overline{x_i}^2$ 로 설정하여 계산한 결과는 Table 4 와 같다.

$$SB_{\eta} = -10\log \overline{x_{i}}^{2} \tag{1}$$

SN 비의 절대값이 클수록 그에 해당하는 변수가 품질 에 미치는 영향력이 크다고 해석할 수 있다. 산출한 SN 비 (n)를 가지고 각 가공 조작 변인의 단계별로 평균을 내어 하나의 가공 조작 변인에서의 SN 비의 최대값과 최소값의 차를 통해 해당 가공 조작 변인의 가공 품질에 대한 기여 도를 계산하였고 Table 5 에 정리하였다.

Table 5 Parameters influence rank and contribution

Parameters	Sp	oring width	Dross		
	Rank	Contribution	Rank	Contribution	
		(%)		(%)	
Р	1	49.8	3	24.06	
PRR	4	2.5	4	13.33	
CC	3	23.2	1	34.86	
CCDT	2	24.5	2	27.75	
	Cutting width		HAZ		
Parameters	Cu	tting width		HAZ	
Parameters	Cu Rank	tting width Contribution	Rank	HAZ Contribution	
Parameters	Cu Rank	tting width Contribution (%)	Rank	HAZ Contribution (%)	
Parameters P	Cu Rank 1	tting width Contribution (%) 48.83	Rank 2	HAZ Contribution (%) 29.57	
Parameters P PRR	Cu Rank 1 2	tting width Contribution (%) 48.83 18.07	Rank 2 4	HAZ Contribution (%) 29.57 15.97	
Parameters P PRR CC	Cu Rank 1 2 3	tting width Contribution (%) 48.83 18.07 16.87	Rank 2 4 1	HAZ Contribution (%) 29.57 15.97 31.45	
Parameters P PRR CC CCDT	Cu Rank 1 2 3 4	tting width Contribution (%) 48.83 18.07 16.87 16.23	Rank 2 4 1 3	HAZ Contribution (%) 29.57 15.97 31.45 23.02	

Fig. 2 Contribution of cutting parameters on the quality of cut

4. 결론

앞서 분석한 Table 5 의 가공 조작 변인의 가공 품질에 대한 기여도를 그래프로 그려보면 Fig.2와 같다.

대체로 레이저 출력이 전반적인 가공 품질에 큰 영향을 미치고 있음을 확인할 수 있고, 특별히 가공물 형상에 해 당하는 스프링의 폭과 절단 폭에 있어서는 결정적인 영향 변수라고 할 수 있다. 스프링 폭을 최대한 유지하기 위해 서는 출력을 7 W 로 낮추어야 한다. 단, 출력을 낮추게 되 는 만큼 가공 절단 폭이 감소하기 때문에 반복가공이 필요 할 수 있다.

펄스 반복율은 가공 품질에 20% 미만으로 영향을 미치 고 있다. 레이저 장비의 상당수가 펄스 반복율을 조절할 수 있게 되어 있고, 이를 통해 빔의 에너지를 조절할 수 있다. 하지만 실험 결과에 따르면 형상기억합금 박막의 레 이저 가공 시 미치는 영향이 미미하기 때문에 가공 과정에 있어서 주요 조작 변인으로 설정하지 않는 것이 바람직하 다.

가공 횟수는 주로 광재와 열 변형 영역과 같은 가공 손 상에 관련하여 영향을 미치고 있다. 따라서 가공 대상물의 손상을 최소화 하기 위해서는 가공 횟수를 최소화 해야 할 것이다. 따라서 4 회의 가공 횟수가 적절하다.

가공 횟수 지연 시간은 가공 대상물을 온전히 유지하면 서 손상을 최소화 하는데 주요 요인으로 작용함을 확인할 수 있다. 지연 시간을 길게 설정할수록 가공 품질이 향상 된다. 따라서 지연 시간을 20 초 이상으로 설정하면 우수 한 가공 품질을 얻을 수 있다.

참고문헌

- Leester-Schädel, M., Hoxhold, B., Lesche, C., Demming, S., and Büttgenbach, S., "Micro actuators on the basis of thin SMA foils, " Microsystem Technology, 14, 697-704, 2008.
- Mathew, Jose, Goswami, G. L., Ramakrishnan, N., and Naik N. K., "Parametric studies on pulsed Nd:YAG laser cutting of carbon fibre reinforced plastic composites," Journal of Materials Processing Technology, 89-90, 198-203, 1999.
- El-Taweel, T. A., Abdel-Maabound, A. M., Azzam, B. S., and Mohammad, A. E., "Parametric studies on the CO₂ laser cutting of Kevlar-49 composite," International Journal of Advanced Manufacturing Technology, **40**, 907-917, 2009.
- Taguchi, G., *Quality Engineering Series*, vol.4: Taguchi Methods-Design of Experiments, the United States of America,: the ASI press; 1993.