균형상실 알고리즘에 적용할 때이터 처리방법의 개선

Improvement of data processing in Loss Of Balance algorithm *길인수', 길품후', 고병규' #손ਰ2

Key words: Band-pass filter, Cut-off frequency, Filtering, Loss of balance, Improvement

1. 서른

균형상실(loss of balance, LOB)에 대한 정의는 정성적으로 모든 사람들이 알고 있지만 정량적 관점에서는 아직 정확하게 명시되어 있지 않다. 보다 정성적인 관점에서 균형상실과 미끄러 짐 혹은 낙상과의 차이를 설명할 수 있으나 물리적인 관점에서 균형상실을 정의하기는 어렵다. 다만 균형상실은 거시적인 측면 에서 낙상의 범주에 속한다고 볼 수 있다.

낙상을 예방하기 위한 거의 대부분의 낙상 검출 연구 목표는 낙상을 보다 정확하고 빠르게 검출하는 방법을 찾는 것이다. 국내외에서 수행되고 있는 많은 낙상 및 낙상 방지에 관한 연구는 균형을 회복하려는 보상운동의 발생에 대한 검출 방법에 초점을 맞추고 있다. 이에 본 연구에서는 낙상을 보다 빠르고 정확하게 검출하기 위하여 기존연구에서 제시된 균형상실 검출 알고리즘¹⁾에 대해 데이터 처리방법의 개선을 하여 검출성능을 향상시키고 자 한다.

2. 성능실험

2.1 성능 실험의 대상

본 연구에서는 기존의 연구에서 제시한 앉은 자세에서의 균형 상실 검출 실험을 동일하게 수행하였다. 실험횟수는 1 인당 120 회 총 240 회의 실험을 하였으며 사람에 따른 편차를 줄이기 위해 비슷한 체격조건을 가진 남성에 대해 실험하였다. Table 1 에서는 피 실험자의 정보를 나타내었다.

Table 1 Subject information

Subject	Age(year)	Height(cm)	Weight(kg)	
Male 1	25	171	62	
Male 2	30	172	64	

2.2 성능 실험의 구성

본 연구에서는 균형상실 측정 장치를 통해 측정된 데이터의 취합과 동기화를 위한 프로그램인 KWON GRF(Visol, Inc., Korea) 를 이용하였다. 입력 값인 발 반력 측정을 위한 힘판(force plate, KISTLER 9285)과 출력 값인 의자와 머리의 가속도 측정을 위한 가속도센서(acceleration sensor, WILCOXON 799LF), 그리고 측정 된 데이터의 취합과 동기화를 위한 신호처리장치(Visol, Inc., Korea, VSAD-101)로 구성되었다. 가속도계는 의자와 안전모에 부착되어 있고, 정자세로 앉아 있을 때 동일한 수평면상에 가속도 가 위치하도록 하였다.

3. **데이터 처리**

3.1 데이터의 취득범위

본 연구를 위한 실험에서 파워스펙트럼(power spectrum)에서 제거되는 데이터의 범위에서 센서들을 통해 얻어지는 입력데이터에 대한 파워스펙트럼 분석을 실시한 결과 기존 연구에 사용된 2 차 필터링에서의 절단주파수 0.3 Hz 에 대해 파워 스펙트럼 값은 Fig. 1 과 같이 발 반력의 경우 약 94 %, 가속도의 경우약 86 % 정도를 원본 데이터에서 제거하게 된다. 이는 원본데이터의 특성이 실제 알고리즘에 반영되지 않을 가능성이 높은

값이다. 따라서 2 차 필터링에 의해 제거되는 원본데이터에 대해 절단 주파수 크기에 따른 균형상실 검출 성능을 평가할 필요가 있다.

검출성능을 판단하는 방법으로는 검출성공률과 여유시간 두 가지가 있다.²⁾ 균형상실 검출성공률(success ratio, SR)이란 균형 상실이 실제 낙상 이전에 효과적으로 검출되었는지의 여부를 판별하기 위한 것이고, 여유시간(margin time, MT)은 낙상의 발생이전에 검출된 균형상실에 대하여 낙상 방지 및 균형 유지를 위해 대처할 수 있는 시간적 여유 수준을 의미한다. 효과적인 검출이 아닐 때 여유시간의 크기는 의미가 없고, 반대로 검출성공률이 아무리 높아도 여유시간이 작으면 검출성공률 역시 무의미하다.

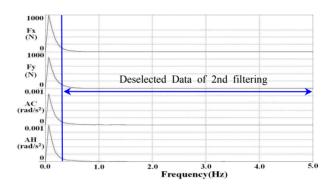


Fig. 1 Range of deselected data of 2nd filtering in power spectrum

3.2 데이터 취득조건

검출성공률과 여유시간을 계산하기 위해 실험을 통해 획득한 데이터들에 대해 다음과 같은 기준을 적용하여 연구를 수행하였다. 조건 1 은 의자 균형 작업시 균형 유지를 위해 보상운동³⁾이일어난 시점(compensatory reaction time, CT)에서 완전히 넘어지는 시점(finished falling time, FT)까지 걸린 시간이 대략 1 초전후이기 때문에 균형상실 발생시점(detecting time, DT)은 FT를 기준으로 2 초 이내에 발생한 경우 유효한 균형상실 검출로 인정한다. 조건 2 는 조건 1 을 만족하고, 균형상실 발생 시점인 DT 와 보상운동이 발생한 시점인 CT 사이의 차가 100 ms 보다큰 경우 유효한 균형상실 검출로 인정한다. 이 값은 중추신경계와 수의근(voluntary muscle)의 상호 신호전달에 걸리는 시간 지연을고려한 것이다.

3.3 데이터 처리

센서를 통해 얻어지는 데이터인 발 반력과 의자 및 머리의 가속도는 샘플링 주기를 1 kHz 로 하였다. 균형상실 검출 알고리 좀 구현 및 모든 데이터 분석은 MATLAB V7.1 (Mathworks, Inc., USA) 을 사용하여 시행하였다. 먼저 실험에서는 움직임이 매우느리기 때문에 저역통과 필터(low-pass filter, 3 Hz)를 사용하여고주파 노이즈를 제거하였다. 필터링 작업 시 위상 지연(phase delay) 현상을 줄이기 위해 정방향과 역방향으로 각각 1 회씩 필터링하였다. 본 연구에서는 기존 연구에서 언급한 대로 3 Hz에 대한 1 차 필터링한 데이터에 대해 상대적 고주파 영역을취하기 위해 2 차 필터링에 대해 절단주파수를 0.01 Hz 간격으로 0.1 ~ 0.5 Hz 까지 증가시키면서 절단주파수에 따른 검출성능에 대해 분석하였다.

4. 결과

4.1 필터링 작업에 따른 비교

Fig. 2 는 각각의 필터링 작업에 따른 검출성공률을 비교한 것이다. 그래프를 통해 필터링의 효과를 확인하기 위해 세 가지 관점에서 비교해 보았다. 성공률에서는 필터링을 전혀 하지 않았을 경우 평균적으로 약 60 % 이었고 1 차 필터링을 하였을 경우는 약 62 % 로 큰 차이가 없었으나, 2 차 필터링을 하였을 경우약 87 % 로 높아졌다.

Figs. 3 와 4 는 각각의 필터링 작업에 따른 여유시간을 비교한 것이다. 조건 1 을 만족하는 여유시간 1 에서는 필터링을 전혀하지 않았을 경우 0.57 sec 이었고, 1 차 필터링을 하였을 경우 각각 0.59 sec 로 큰 차이를 보이지 않았다. 하지만 2 차 필터링을 했을 때는 1.02 sec 로 높아졌다. 조건 2 를 만족하는 여유시간 2 에서는 필터링을 전혀 하지 않았을 경우 0.19 sec 이였고, 1 차 필터링을 하였을 경우 0.20 sec 로 역시 큰 차이를 보이지 않았지만 2 차 필터링을 했을 때는 0.62 sec 로 높아졌다.

2 차 필터링 처리작업은 필터링을 하지 않은 결과나 1 차 필터링한 결과에 비해 월등히 우수한 검출 성능을 보이므로 알고리즘 수행에 필요한 중요한 사항임을 알 수 있다.

4.2 최적 2차 필터링 절단주파수 분석

Table 2 는 각각의 모델에 대한 절단주파수에 따른 검출성공률과 여유시간에 대한 값을 나타내었다.

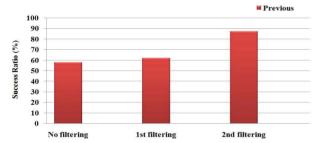


Fig. 2 Comparison with Success ratio by each filtering

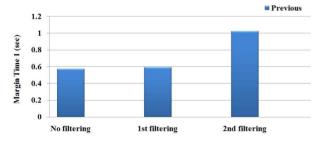


Fig. 3 Comparison with Margin time 1 by each filtering

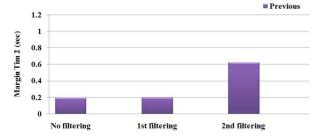


Fig. 4 Comparison with Margin time 2 by each filtering

Table 2 Values by cut-off frequency from individual model

Model	Cut-off frequency(Hz)		Success ratio(%)		Margin time(sec)	
	1st filtering	2nd filtering	1st condition	2nd condition	1st condition	2nd condition
Previous	3	0.30	94.4	92.6	1.010	0.479
Simulation	n 3	0.18	97.5	98.9	1.314	0.923

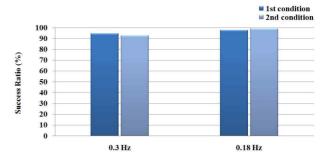


Fig. 5 Comparison with Success ratio by 2nd filtering

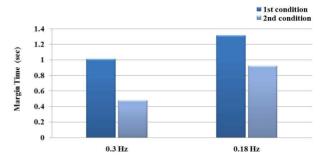


Fig. 6 Comparison with Margin time by 2nd filtering

Figs. 5 와 6 에 나타낸 것과 같이 2 차 필터링에 대한 검출성공률은 절단주파수가 0.18 Hz에서 평균 98 % 까지 높아짐을 알 수 있었다. 여유시간 1 과 여유시간 2 에 있어서는 0.18 Hz 에서 각각 1.314, 0.82 sec 로 높아짐을 알 수 있었다. 이러한 결과는 기존의 2 차 필터링에 대해 데이터 처리방법을 개선함으로써 더욱 효과적인 검출성능을 얻은 것이라 볼 수 있다.

5. **골든**

본 연구에서는 기존 균형상실 검출 알고리즘에 대하여 검출성 능을 향상시키기 위해 최적화를 실시하였다. 본 연구의 내용을 정리하면 다음과 같다.

- (1) 균형상실 검출의 정확성을 높이기 위해 대역통과필터의 절단주파수를 변화시키면서 측정한 결과 기존의 연구결과 보다 검출성능이 향상된 것을 알 수 있었다.
- (2) 연구결과 2 차 필터링 절단주파수가 0.18 Hz 에서 최대 98.9 % 의 검출성공률과 최대 1.314 sec의 여유시간을 얻을 수 있었다. 이는 0.18 Hz 로 2 차 필터링한 데이터가 힘판에서 얻어진 발 반력 중 균형유지를 위해 하지의 근육에서 발생되는 실제 힘을 의미한다고 볼 수 있다.

\$7

본 연구는 한국학술진홍재단 2009년 일반연구자지원사업(과 제번호 2009-0074461)의 지원에 의하여 수행되었습니다.

참고문헌

- A. A. Ahmed, and J. A. Ashton-Miller, "Is a Loss of Balance a Control Error Signal Anomaly? Evidence for Three-sigma Failure Detection in Young Adults," Gait and Posture, Vol. 19, pp. 252-262, 2004.
- K. H. Kim, K. Son and J. H. Park, "Effect of data selection on the loss of balance in the seated position," ICBME 2008 (13th International Conference on Biomedical Engineering), pp. 2027~2029, Singapore, Dec.3-6 (2008)
- Jensen J.L., Brown L.A., Woollacott M.H. (2001) Compensatory stepping: the biomechanics of a preferred response among older adults. Exp. Aging Res. 27J:361-376