유한요소법을 이용한 지중케이블 단락전자력 Modeling 연구

<u>**박흥석**</u>*, 강지원*, 장태인*, 배주호*, 김두진*, 최경규*, 홍동석** 한국전력공사*, 대한전선(주)**

Study on the Short-Circuit Electromagnetic Force Modeling for Underground Transmission Cable by Using Finite Element Method

Hung-Sok Park^{*}, Ji-Won Kang^{*}, Tae-In Jang^{*}, Ju-Ho Bae^{*}, Du-Jin Kim^{*}, Kyung-Kyu Choi^{*}, Dong-Suk Hong^{**} KEPCO^{*}, Taihan Electric Wire Co. Ltd^{**}

Abstract - 최근 도심지 전력수요의 증가로 송전선로 건설의 필요성이 증대되고 있으나, 가공송전선로가 가지고 있는 한계 때문에 지중송전선 로의 건설이 증대되고 있는 추세이다. 이러한 상황에서 지중 및 가공을 포함하는 거시적인 관점에서 지락 및 단락과 같은 고장시의 대전류 현 상에 대한 연구는 어느 정도 시도된 바가 있으나, 지중케이블 시스템 자 체에 미치는 영향에 대해서는 그 연구가 미비한 것이 현실이다. 특히 단 락고장의 경우 고장전류의 크기도 크지만 고장전류 발생에 따른 전자력 을 동반하게 되어 케이블 및 접속함, 각종 금구류에 전기적, 기계적인 스트레스를 야기할 수 있다.

따라서 본 논문에서는 최근 발생한 단락고장 상황을 고려하여 전자력 에 의한 케이블의 거동특성을 확인하기 위해 154kV OF케이블 3상단락 실증시험을 시행하였고, 실증시험시 촬영된 고속카메라 영상을 이용한 변위분석 결과와 유한요소법을 이용하여 계산된 케이블의 변위 특성을 비교 분석하여 유한요소법을 이용한 계산방법이 케이블 거동특성 분석 에 적합한지 그 실효성을 검증하고자 한다.

1. 서 론

지중송전계통의 고장은 필연적으로 대전류 현상을 수반하는 경우가 대부분으로서 고장전류는 고장 케이블 자체와 인접해 있는 타 선로 및 통신선 등에 악영향을 미칠 가능성이 크므로 초고압 케이블의 운전전압 레벨이 지속적으로 증가하고 있는 상황에서 사고의 파급 및 위험정도 또한 지속적으로 증가하고 있다.

단락고장의 경우 고장전류 발생에 따라 전자력을 동반하게 되고, 이러 한 전자력은 고장전류의 크기 및 케이블 포설환경에 따라 다르지만, 현 재 지중케이블 시공 및 포설단계에서 전자력에 대한 구체적인 검토 없 이 기존의 설계방식을 답습하여 설계하는 경우가 대부분이며, 각 포설 환경 조건에 맞는 검토가 진행되지 못하고 일괄적인 기준을 적용하여 시공이 이루어지고 있는 현실이다.

최근 국내에서도 지중케이블 계통에 단락고장이 발생하여 지중케이블 및 접속부가 손상을 입은 경우가 발생하였으나, 당시에는 이에 대한 구 체적인 연구가 진행된 바 없어 단락고장 발생시 전자력에 의한 물리적 인 힘을 받은 케이블의 재사용 여부를 판단하는데 어려움이 있었고, 전 자력의 피해를 방지할 수 있는 대책 또한 제시하지 못한 것이 사실이다.

따라서 본 논문에서는 단락전자력의 영향이 있을 때 케이블의 거동특 성을 확인하기 위하여 154kV OF케이블을 대상으로 3상단락 실증시험을 시행하였고, 실증시험시 촬영된 고속카메라 영상을 이용한 영상분석 결 과와 유한요소법을 이용하여 계산된 케이블의 변위 특성을 비교분석하 여, 유한요소법을 이용한 계산 방법이 케이블 거동 특성 분석에 적합한 지 그 실효성을 검증하고자 한다.

2. 본 론

2.1 154kV OF케이블 3상단락 실증시험 2.1.1 3상 단락전류 인가

실증시험시 고장의 종류는 케이블에 가장 가혹한 상황을 모의하기 위 하여 EMTP 시뮬레이션을 통해 계산된 고장전류의 크기와 이를 바탕으 로 계산한 전자력 계산 값을 근거로 하여 3상 단락고장으로 결정하였다. 3상 단락고장 전류의 크기 및 투입시간은 한전의 전압등급별 차단기 용량 및 차단시간 규격을 고려하여 50[kA_rms], 125[kA_Peak], 4Cycle 로 정하였으나 KERI에서 시행된 실증시험시 실제 투입된 단락전류는 A상을 기준으로 151[kA_Peak]로 다소 높은 전류가 인가되었다.

2.1.2 실증시험선로의 구성

시험선로의 구성은 EBA측을 에폭시를 이용하여 간이 단말로 설치하였고, EBG는 삼상 일괄형으로 설치하였다. 케이블 본선 구간은 총 20[m]의 모의 전력구 안에 절연접속함을 기준으로 에폭시 단말측은 삼

각배열 수평스네이크 한피치, EBG측은 삼각배열 수평스네이크 반피치, 수평배열 수평스네이크 반피치로 설치하였다. 또한 오프셋과 절연접속함 을 설치하였으며 1.5[m] 간격의 행거에 고정하는 등 실제 시공기준을 그대로 모의하였다.

단락전류의 인가는 EBG측에서 3상 common을 잡고 에폭시 단말측에 단락발전기를 통한 3상 단락전류를 인가하는 방식으로 시험이 진행되었 다. <그림 1>은 154kV OF케이블 3상단락 실증시험선로의 구성 개요도 를 나타내었다.

<그림 1> 3상단락 실증시험선로 구성 개요도

2.2 유한요소법을 이용한 케이블 변위 시뮬레이션 2.2.1 시뮬레이션에 사용된 3상 단락전류

단락전자력에 따른 케이블의 동적해석에 사용하기 위한 단락전류는 실증시험 결과와의 비교분석을 위하여 동일 크기인 A상 기준 151[kA_Peak]를 적용하였다. 본 모의에서 사용된 3상 단락전류는 지수 함수와 sin함수를 통해 시간에 대한 연속함수로 표현하였다.

초기의 직류성분은 시간에 따라 감소(decay)하며 지수함수 감쇠진동 의 형태를 가진다. 여기서 감쇠비("5", damping ratio)가 클수록 더 빨리 감소한다. 연속함수로 표현된 삼상단락전류의 파형을 <그림 2>에 나타 내었다.

<그림 2> 적용된 삼상단락전류 파형(A상, 151[kA_Peak])

2.2.2 유한요소 모델링

양쪽 끝단이 클리트에 고정되어 있는 케이블은 짧은 시간의 전자력에 의한 충격(동역학)과 변화하는 정적 힘을 받는 동적시스템으로 모델링 될 수 있다. 매우 큰 전자기력을 받는 케이블은 큰 변형을 일으키며 케 이블의 탄성영역을 넘어 소성변형을 일으키고 영구변형을 가져오기 때 문에 인장시험을 통한 탄성 및 소성변형 영역까지 케이블의 응력-변형 률 선도를 획득하고 이를 반영한 유한요소 해석이 필요하다. 케이블은 변화하는 힘을 받는 탄소성체의 진동 시스템으로 모델링 될 수 있다.

유한요소법은 복잡한 구조의 보(beam) 모델링이 상대적으로 쉽다는 장점이 있으나 엄밀한 동특성해석을 위해서는 수백 개의 유한요소가 필 요하므로 결국 수천 개의 방정식을 풀어야하는 단점이 있다. <그림 3> 에 본 논문에서 제시한 오일러 빔의 모델로 표현된 케이블의 유한요소 모델을 나타내었다

본 케이블 모델링에서는 실증시험과 동일한 조건으로 케이블 배치는 삼각배열로 하였고, 클리트 간격은 전력구내 클리트 간격인 1.5[m]로 하 였다. 유한요소 모델링을 위하여 1.5[m]의 케이블을 총 60개의 노드 (node)로 나누었다.

2.2.3 케이블의 종탄성 계수 및 곡강성 계수

케이블 모델링을 위한 중요한 변수는 재료의 기본적인 특성으로 가장 많이 사용되는 물성 값인 종탄성 계수(Young's modulus)와 곡강성 계 수이다[3].

종탄성 계수란 재료에 힘을 가할 때 나타나는 재료의 변형 정도를 나 타내는 물리 값을 의미하며, 보통 영률 이라고도 하며 E로 표현한다.

$$E = \frac{\sigma}{\epsilon} = \left(\frac{P}{A} / \frac{\Delta l}{l}\right) [kg/cm^2]$$
[kg/cm²]

여기서, σ : 인장[kg/cm²]

- ϵ : 연신율
- P : 케이블 도체의 축력[kg] A : 케이블 도체의 단면적[cm²]
- l : 케이블의 길이[cm]
- △l:케이블의 늘어난 길이[cm]

또한 곡강성 계수는 EI로 표현되며, 아래의 식과 같이 나타낼 수 있 다. 곡강성에 대한 물리적인 의미는 탄성적인 변형에 기본으로 한 곡률 강성을 나타내는 매개변수이다.

 $EI = \rho M [kg \cdot cm^2]$ 여기서, M : 곡률 모멘트[kg · cm] ρ : 곡률 반경[cm]

아래 <표 1>에 케이블의 동적인 해석을 위해 본 논문에서 적용한 OF케이블의 종탄성계수 및 곡강성 계수를 나타내었다. 여기서 ds[mm] 는 시스의 평균직경을 나타낸다[4].

<표 1> OF 케이블의 종탄성 계수 및 곡강성 계수

겨	비수	종탄성계수[kg/mm ²]	곡강성 계수[kg·mm²]
	값	$0.5 \ { m x} \ 10^4$	14.4 x $d_s^{3.94}$

2.3 삼각배열 구간의 실증시험 결과

변위[mm]

금번에 실시된 154kV OF케이블 3상단락 실증시험에서는 현재 한전의 지중케이블 포설조건과 동일하게 삼각배열과 수평배열 구간으로 구분 포설하였다. <표 2>의 변위 측정 결과는 실증시험 종료 후 변위의 측정 결과를 보여주는 것이고, 아래 <그림 4>에서는 삼각배열 구간을 고속카 메라로 촬영한 영상의 일부분이다.

<표 2> 삼각배열 구간의 실증시험 후 변위 측정 결과						
구분	A-B상간	B-C상간	C-A상간			

75

197

(c) 3/2 Cycle 후 <그림 4> 삼각배열 구간의 시간별 고속카메라 영상

3상 단락전류가 투입될 때 케이블 각 상의 전자력의 영향으로 인한 케이블 거동을 확인하기 위하여, 고속카메라 촬영 영상을 이용하여 변위 분석을 수행하였다. <그림 5>는 실증시험 영상 변위분석한 케이블 A상 의 변위를 보여주고 있다. 케이블 A상의 최대변위는 132.75[mm]로 확인 되었다

<그림 5> 케이블 A상의 실증시험 영상 변위분석

2.4 유한요소법을 이용한 시뮬레이션 결과

<그림 6>은 고장전류의 크기를 실증시험시 단락전류의 크기와 동일 하게 151[kA_Peak]로 시뮬레이션한 결과로, 유한요소 모델링을 위해 나 눈 60개의 노드(node)중 31번째 노드(중간부분)에서 가장 큰 변위를 나 타내었고, 아래의 <그림 6>은 시간에 따른 케이블 A의 종축(세로방향) 변위를 나타내고 있으며, 여기서 케이블 A상의 최대변위는 0 140.8[mm]로 실증시험 값인 132.75[mm와 약 6[%]의 차이를 보임으로써 본 모델링의 정확성을 검증하였다.

154kV OF케이블 3상단락고장시 전자력에 의한 케이블 거동특성 확인 을 위하여 실계통을 모의한 실증시험과 유한요소법을 이용한 시뮬레이 결과, 실증시험시 132.75[mm], 유한요소법을 이용한 모의시 140.8[mm]의 최대변위를 나타내고 있어서, 유한요소법을 이용한 모델링 의 정확성을 입증하였다.

하지만 유한요소법을 이용한 모델링 결과, <그림 5, 6>에서 보이는 바 와 같이 최대 변위점을 지난 경우 실제의 케이블은 전자력의 영향으로 탄성변형 영역을 넘어서 소성변형을 일으키고 있는 것으로 추정되나, 유 한요소법을 이용한 모의시에는 소성변형 부분에 대해서는 확인할 수 없 었다. 따라서 소성변형 부분에 대한 추가적인 보완이 된다면, 케이블 거 동특성을 분석하는 유용한 방법으로 향후 케이블의 거동특성 분석에 활 용될 수 있을 것으로 기대된다.

[참 고 문 헌]

- [1] Charles A Damell, "Cable Cleat-A Global Technique to Protect Three-Phase Single Conductor Cables during Short-Circuits" IEEE Transmission on Power Delivery, pp.143-150, 2004
- [2] F. Donazzi, R. Gaspari, and et. al., "Research on the Performance of 400kV
- Extruded Cable System under Short Circuit Conditions", CIGRE 1996: 21-205
 [3] 한국전력공사 현장기술개발과제, "전력구내 송전케이블 수직스네이크 포설공법 도입 및 금구류 개발(최종보고서)", 2007.12
 [4] "전력케이블 기술 핸드북", 일본 전기학회, 1989

127