Optimization of granular-based RBF NN with the aid of reconstructability criterion

Reconstructability criterion을 통한 granular-based RBF NN의 최적화

  • Park, Ho-Sung (Industry Administration Institute, University of Suwon) ;
  • Oh, Sung-Kwun (Dept. Electrical Engineering, University of Suwon)
  • 박호성 (수원대학교 산업기술연구소) ;
  • 오성권 (수원대학교 전기공학과)
  • Published : 2009.07.14

Abstract

본 논문에서는 주어진 데이터의 입자화 특성을 효과적으로 모델 구축에 반영하고자 재구성 평가 기준을 통한 새로운 형태의 입자화 기반 RBF 뉴럴 네트워크를 개발한다. 주어진 데이터들의 입자화 특성을 파악하기 위해서 새로운 형태의 FCM 클러스터링(-Context-based fuzzy clustering)을 이용한다. 즉, 출력 공간의 입자화 특성은 K-means clustering 방법을 사용한 것에 반해, 입력 공간에서의 정보들은 Context-based fuzzy clustering 방법을 이용하여 효율적으로 데이터의 특성을 파악하여 모델의 구축에 반영하였으며, 또한 모델의 최적화를 위하여 RBF 뉴럴 네트워크의 은닉층의 수를 재구성 평가 기준을 통하여 모델의 최적화를 꾀하였다. 제안된 모델의 효율적인 특성을 보여주기 위해 저차원 합성 데이터를 이용하여 모델을 평가한다.

Keywords