열 해석을 이용한 SMPS 온도 특성 개선

나태권, 정지훈, 추종양, 권중기 삼성전자 디지털 프린팅 사업부 선행연구팀

Temperature performance improvement of SMPS using thermal simulation

Taekwon Na, Jeehoon Jung, Jongyang Choo, Joonggi Kwon Samsung electronics digital printing division

ABSTRACT

재택근무 와 소규모 창업 등 사무 환경의 변화 에 따라 프린터와 복합기의 소형화가 요구 되고 있다. 이러한 소형화에 의해 프린터 내부의 발열 요소들이 제한 된 공간에 배치되어, 기기 내부의 열 유동 및 발열 개선은 제품의 수명과 안정성 확보를 위한 중요 사항이 되었다. 본 논문에서는 프린터와 복합기의 내부 요소 중 주요 발열원인 전원 공급 장치에 대하여 Computational fluid dynamics (CFD) software 인 ICEPAK을이용하여 중요 부품의 배치 조건에 따른 대류 와 온도 특성을확인 하고, 최적화 된 부품 배치 방법을 제안한다. 또한 제안하는 부품 배치 방법을 적용한 초박형 프린터용 50W 급 전원공급 장치를 제작하여 실제 온도 특성이 개선됨을 확인한다.

1. 서 론

전자 제품의 소형화 고속화는 일반적 추세로 프린터와 복합기 등의 프린팅 장비가 가정용 및 소규모 기업용으로 보편화되어 디자인, 소형화, 저 가격화가 중요한 요소가 되었다. 이로 인해 전원 공급 장치 또한 공간 및 가격적 제약 상황에서주요 발열 원으로 제품의 수명과 안정성에 영향을 미친다. 따라서 전원 공급 장치에서도 각 부품의 발열량 및 발열 부품의배치 및 대류의 해석이 요구가 증대되고 있다.

본 논문에서는 열 전달율을 고려하고, Computational fluid dynamics (CFD) software를 이용하여, 실제 프린터 배치 공간 에서 각 부품의 형태 별, 배치 영역에 따른 대류특성을 검토하여 최적화된 배치 방법을 제안한다, 열 회로망 법을 이용하여 각 부품을 모델링 하고, 부품의 소비 에너지를 측정하고모델링에 적용한다. 이를 통해 실제 부품 배치에서 대류의 발생 상태와 온도 개선 사항을 확인하여 최적화 된 배치 안을 제안 한다. 본 결과를 이용해 초박형 프린터 용 50W급 전원 공급 장치를 제작하여 주요 부품의 온도의 결과를 측정하여 특성이 개선됨을 확인 하였다.

2. 부품 요소 특성 분석

2.1 대류 시뮬레이션 및 최적 배치 제안

프린터 내 방열 구조는 일반적인 방열구조와 같이 자연 대

류와 강제 대류를 고려한다. 케이스 및 기구면의 HOLE과 APERTURE을 통한 대류 현상이 자연 대류의 대표적 사용 예이며, FAN을 이용하는 방법이 강제 대류 구현 예이다. 식(1)은 자연대류 열전달 율이다. 결정 요소로 길이와 온도차, 배치위치가 있다.^[1]

$$h_{cov}$$
= $2.51 \times C \times \left(\frac{\triangle T}{L}\right)^2 [\text{W/m}^2 K]$ (1)
C:정수 , \triangle T: T_W — $T_a(T_W$: 표면 온도 T_a :대기 온도),
L: 대표 길이 [1]

식 (1)의 결정 요소 중 프린팅 기기의 크기, 배치 는 한정되어 있어 열전달율의 변화 요소는 한계를 가지게 된다. 따라서 자연대류를 이용한 방열은 제한적이다. 장치의 체적과 발열밀도를 고려 할 때 초소형 프린터는 자연대류 보다, 강제 대류영역 존재하여 제품의 크기와 장착 위치를 고려하여 4500rpm, Fan-flow 0.459"3 /min Fan을 이용한 flow out의 강제 공랭방식을 선택하였다. 결정된 강제 공랭은 식 (2)와 같이 대류에의한 열 유량 이 결정된다. 식 (2)의 열 전달율은 층류와 난류로 나누어진다. 층류의 의한 열 전달율은 식 (3), 난류에 의한열 전달율은 식 (4)와 같다.[1]

$$W = h_X \times A \times \triangle T \tag{2}$$

$$h_X = 3.86\sqrt{\frac{V}{L}} \tag{3}$$

$$h_X = 6 \times \left(\frac{V}{L^{0.25}}\right)^{0.8}$$
 (4)

V: 기류의 속도, L: 대표 길이 A: 표면적^[1]

식 (3)과 식(4)에서 대표 길이와 외부환경이 동일한 상황에서 기류의 속도가 변화 요인이 된다. 이를 통해 프린터의 전원 장치의 부품 배치 조건 중에서 기류의 영향에 제약을 줄수 있는 요소를 결정한다. 각 요소로 부품의 표면적과, 공기유입부와 배출부에서의 부품의 위치, 각 부품의 배치 조건을 고려하였다. 부품 표면적에 대해 전원 장치의 주요 부품의 형태인 prism, cylinder 형의 크기에 따른 대류 흐름 및 방열 성능을 확인 하였다. 부품의 크기에 따른 방열 성능 은 표1과표2 와 같다. prism 형은 5mm의 횡축에서 cylinder 형의 경우

반지름 3mm 이상에서 방열에 영향을 주므로, 이를 고려하는 부품의 기준 크기로 결정 하였다. 표 3은 일정 크기의 부품이 흡입 통풍구와의 거리에 따른 대류의 흐름 및 방열 성능을 나타낸다. 부품이 흡입 통풍구와 50mm 이내에 있을 때 장애물이 있을 때 대류 저항이 발생되고, 내부 발열체의 온도가 상승하였다. 표 4는 기준 크기 이상의 부품이 교차 될 때 그 거리에 따른 내부 부품의 온도결과 이다. 부품이 일열로 배치되면 내부 대류의 저항을 적게 발생 시키고 발열 성능을 저해 하지 않았다. 단 대류의 영향이 없는 원 거리에 배치 할 경우는 내부 발열체의 방열에 영향을 주지 않았다. 이를 통해 프린팅 기기용 전원 장치에 대해 기준 크기 부품을 흡입 통풍구에서 일정거리 이상 이격하고, 대류 방향으로 각 부품 간 최소 거리로 일열 배치를 제안한다.

표 1 Prims type 장애물 크기에 따른 내부 부품 온도 Table 1 Inner component Temperature for prims type obstacle

Table 1 Tiller component remperature for prime type obstact					
장애물	장애물	5mm	10	1 5	20
크기	없음	SHIII	10mm	15mm	30mm
온도	70℃	70℃	71℃	72℃	72℃

표 2 Cylinder type 장애물 크기에 따른 내부 부품 온도 Table 2 Inner component Temperature for cylinder type obstacle

장애물					
크기	장애물 어	3mm	5mm	10mm	15mm
(반지름)	없음				
온도	70℃	70℃	71℃	73℃	76℃

표 3 흡입 통풍구와 장애물의 거리에 따른 내부 부품 온도 Table 3 Inner component Temperature for distance (between input hole and obstacle)

(zerneen inpat nere and eseraere)					
장애물 크기 (반지름)	장애물 없음	10mm	15mm	30mm	50mm
온도	70℃	72℃	72℃	71℃	70℃

표 4 부품간 이격 거리에 따른 내부 부품 온도

Table 3 Inner component Temperature for two component distance

부품간 거리	0mm	5mm	10mm	15mm	40mm
온도	60℃	61℃	62℃	62℃	60℃

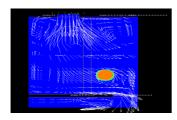


그림 1 대류 및 온도 simulation 결과

Fig. 1 Temperature and air flow simulation result

2.2 열 저항 모델링 및 부품 발열량 분석

그림 2는 초박형 전원 공급 장치와 주변부의 열 저항 모델을 나타내었다. 발열원인 부품 소자, 케이스, 기판의 요소와, 각각 전도, 대류, 방사로 구분 하였다. 전도, 대류는 각 요소의 기본 성질을 이용하였고, Fan 에 의한 강제 대류 이므로 풍속과요소의 표면적 확대를 고려하였다. 부품의 발열은 표면과 PCB 기판, 케이스 등으로의 대류 전도, 방사로 외부로 방출 된다. 표 5는 50W급 준 공진형 플라이백 컨버터 에서 일반 부품의경우 실측한 각 부품 요소의 소비 전력 값과 온도측정값의 오차를 고려하여 산정한 발열량 이다. 주요 발열원인 Mosfet은 600V 내압, 도통저항 190mΩ을 기준으로 소모 전력을 산출하여온도 측정 오차 고려를 산정하였다 하였다. 그림 3은 Mosefet의 드레인-소스전압, 드레인 전력, 소비전력의 시뮬레이션 결과이다 [2]

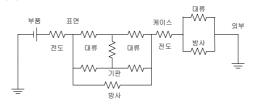


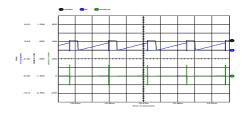
그림 2 초박형 프린터 전원부 열저항 모델링

Fig. 2 Modeling of compact printer SMPS and frame

표 5 부품 발열량 산출치

Table 5 Heating Value of smps components

위치	재질	발열량	기타
PCB	FR1	K=30W/m-k	
Heatsink	AL5052	K=137W/m-k	
Resistor		0.006	MLCC
Resistor	Metal carbon	0.005	1W type
Triac	Epoxy	1.2	
Mosfet	Epoxy	0.3	
Bridge diode	Epoxy	0.3	
RCD diode	Epoxy	0.5	
Linefilter	Copper+	0.5	
Linemitei	Ferrite	0.5	
Thermistor	Metal carbon	0.5	
Transformer	Ferrite	0.5	



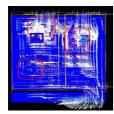

그림 3 Mosfet의 Vds(흑), Id(청) ,소비전력(녹) 시뮬레이 션 결과

Fig. 3 Simulation of Mosfet Vds, Idrain, wattage

3.전원장치 방열 설계 및 실험 결과

3.1 전원 장치 온도 시뮬레이션 및 결과 분석

제안된 배치 방법인 부품의 수평 길이 5mm, 반지름 30mm, 인 기준 크기 이상의 부품을 공기 유입부에서 이격거리 50mm 이상으로 고려하여 배치하였다. 또한 대류의 방향으로 일열 배치하였다. Heatsink는 풍속에 따른 열 저항이 Pin, Tower 형에비해 불리하나 가격적인 요인을 고려하여 plate 형으로 사용하였다. 강제 대류에 의한 발열이므로 Heatsink 의 흑착 은 고려하지 않았고 방향성을 고려하였다. 발열원은 굴뚝 효과 등을고려하여 후방 면으로 위치하지 않게 하였다. [3] 시뮬레이션 PCB에 대하여 각 Pattern Copper의 양을 고려하여 6개의 구성요소로 분리하였다. 부품의 각 Pin은 Mesh의 감소를 위하여공기와 철의 평균 전도율 으로 처리하였다. 그림 4는 배치 방법 적용 전,후 의 전원 장치의 대류 및 온도 시뮬레이션 결과이다. 열 해석 적용 후의 온도 및 대류 개선을 확인 할 수 있었다.

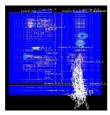


그림 4 열해석 전 후 열 및 대류 시뮬레이션 결과 Fig. 4 Simulation result of before and afterimprovement

3.2 전원 장치 제작 및 온도결과

표 5는 FR1 단면 PCB로 시뮬레이션 결과를 적용하여 145 X75mm 높이 15mm 크기의 5V,24V DC 출력의 50W급 준 공진형 컨버터를 제작하여, 초소형 프린터에 장착 후 실측된 온도결과 이다. 동일 성능의 부품 및 Fan을 포함한 외부 구조가 고정된 상태에서 열 해석을 통한 배치구조의 변경 적용 후에 온도가 최대 9도 정도 개선됨을 확인 하였다. Linefilter의 경우 온도 특성이 양호하여 재료비 절감을 위해 소형으로 변경하여 온도 상승이 발생하였다.

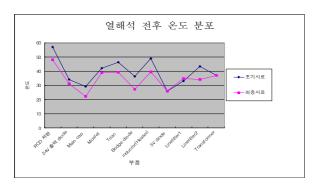


그림 5 열 해석 전,후 온도 분포

Fig. 5 Temperature graph of before and after improvement

표 6 각 부품별 실측 온도

Table 6 Temperature of SMPS components

부품	초기 시료	개선 적용시료	온 도 차
一方	온도(℃)	온도(℃)	(℃)
RCD 저항	57	48.0	9
24V 출력 diode	34.2	31.2	3
Main cap	29.3	22.3	7
Mosfet	42.1	39.1	3
Triac	46.3	39.3	7
Bridge diode	36.4	27.3	9.1
inductor(Heater)	49.0	39.6	9.4
5V diode	25.9	26.0	0.1
Linefilter1	33.1	35.0	-1.9
Linefilter2	43.3	34.2	8.8
Transformer	37.0	37.0	0

그림 6 제작된 초박형 플라이백 컨버터

Fig. 6 Flyback converter for compact size printer

4. 결 론

본 논문에서는 실험 및 시뮬레이션을 통해 각 부품 요소의 크기와 위치에 따른 대류 및 온도 특성을 분석 하였다. 초박형 프린터 용 전원 공급 장치 개발을 위하여 해석 가능한 모델링, 방열량 과 개선 방법을 제시 하였다, 이를 바탕으로 시뮬레이션 및 50W 급 준 공진형 플라이백 컨버터를 설계하고,실험을 수행하여 기존 전원 장치와 비교 하여 열 해석을 통한 부품 배치 변경만 으로 온도 성능 향상을 확인 할 수 있었다.

참 고 문 헌

- [1] いとう きんし, くにみね なおき "電子機器 の熱對策設計", 日刊工業新聞社, 제2판, pp 9~39, 2006
- [2] 김찬기, 이원교, 박종광, 류홍우 "전력전자 System의 Cooling system(2)".전력전자추계학술대회, 2004.11
- [3] 전장건, 조수억, 박노식, 박성준, 문채주, 권순재, 김철우 "평균기법을 이용한 인버터 히트싱크 최적화 설계",전력전자학술대회, 2006.6