Enhanced Electrical and Optical Properties of Ag Ohmic Contacts for GaN-based FCLEDs by an NiZn Alloy Capping Layer Capping층으로의 NiZn 합금을 이용한 Ag 오믹 반사전극의 전기적, 광학적 특성 향상에 대한 연구

김윤한, 정세연, 홍현기, 전준우, 정상용, 이진복, 성태연^{*} 고려대학교 신소재공학과

초 록: 기존의 Flip-chip형 발광소자에에서의 Ag반사층 상에 NiZn 합금을 적용한 구조를 통하여 기존보다 향상된 열적 안정성과 전기적 광학적 물성을 얻고 이에 따른 오믹 메커니즘의 규명을 실시하였다

1.서론

근래에, 갈륨질화물 기반 발광소자는 반도체 조명으로서의 조명과 다양한 광학적소자에의 응용분야로 많은 발전을 이루어왔다. 반도체 조명을 이루기 위해서는 높은 광출력을 가진 발광소자가 필수적이다 하지만, 기 존의 top-emitting형 발광소자의 구조는 열 방출과 전류퍼짐층의 낮은 투평으로 인한 소자 내의 빛의 흡수 때문에 고출력 소자로서의 치명적인 약점들을 가지고 있다이러한 대안으로서 문제를 해결하기 위하여 Flip-chip형 발광소자가 사용되고 있다

고성능의 Flip-chip형 발광소자는 향상된 p형 전극물질의 전기적, 광학적 물성을 필요로 한다. 일반적으로, p형 전극 물질로 Ag가 사용되지만 열 처리 후의 Ag 반사층과 p형 GaN층의 계면에 많은양의 기공이 생성되어 열적인 감쇠 현상이 발생하게 된다

따라서 이를 해결하기 위하여 Ni/Au 삽입층을 삽입하는 방법과 투명 전도성 산화물 삽입층을 삽입하는 방법, 그리고 Capping 층을 삽입하는 방법 등이 널리 연구되어 왔다

2. 본론

본 연구에서는 Flip-chip형 발광소자로의 적용을 위해 NiZn 합금층(200nm, 10 at% Zn)을 열처리 후 기존계면에서 생성되던 기공 및 표면의 Ag의 응집현상을 막기 위해 Ag 반사층 (200nm) 상에 Capping 층으로 사용하였다. Flip-chip형 발광소자의 Capping층의 삽입으로 인한 전기적, 광학적 특성 및 Flip-chip형 광학소자에서의 분석은 전류전압(I-V)특성 분석, 광출력-전류(L-I)특성 분석, 반사도 측정, 주사전자현미경(SEM), X선 표면분석장치(XPS), Auger 전자현미경(AES), Glancing-X선 회절분석법(GXRD)를 이용하였다. 400, 500도에서 1분간 열처리 된 시편은 기존의 Ag 층에 비하여 우수한 표면 조직과 우수한 오믹 경향을

400, 500도에서 1분간 열처리 된 시편은 기존의 Ag 층에 비하여 우수한 표면 조직과 우수한 오믹 경향을 보였다. Ag/NiZn Capping층이 적용된 광학소자는 20mA의 전류주입 하에서 3.22~3.28V의 순방향 전압특성을 보였다. 제작된 광학소자는 기존의 Ag 반사층이 적용된 광학소자에 비하여 높은 광출력특성을 나타내었다

3. 결론

향상된 오믹 메커니즘을 규명하기 위하여 실시된 AES, XPS 실험을 통하여 향상된 본 연구에서 제안한 capping층을 삽입함으로 인한 오믹 메커니즘을 규명하고 본연구의 구조가 적용된 LED 에서의 향상된 물성을 입증하였다.