SW-P32

Set voltage improvement of resistive switching in MnO_x using oxygen annealing

Min Kyu Yang^{1,2}, Jae-Wan Park¹, Tae Kuk Ko² and Jeon-Kook Lee¹*

¹Thin Film Materials Research Center, Korea Institute of Science and Technology, ²Department of Electrical and Electronic Engineering, Yousei University

Resistive memory switching devices based on transition metal oxides are now emerging as a candidate for non-volatile memories. However, for the development of resistive memory devices using transition metal oxides, improvements of several memory switching properties are required. In this letter, we report one of the ways to minimize the distribution of memory switching parameters by oxygen annealing at $Ti\text{-MnO}_X$ interfaces. From x-ray photoelectron spectroscopy measurements, we observe that change in Mn^{+4}/Mn^{+3} ratioatthe MnO_X surface by oxygen-annealing. We can conclude that the excess of oxygen by oxygen annealing of MnO_X film leads to an increase of Mn^{4+} contentatthe MnO_X surface. The effect of oxygen annealing on the improvement of distribution of V_{set} and R_{off} resistive switching is discussed.