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Fig. 1.  Principle of the magnetostrictive wire type displacement 
sensor.
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Fig. 2. Reciprocating error depending on the magnet size and gap.
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 The magnetostrictive wire type displacement sensor 
utilizes the magnetostrictive effect and propagation of an 
elastic wave.  The sensors of this type are used for the displacement 
measurement of the comparatively long distance of carrier 
line in the factory.  Fig. 1 is showing the principle of the sensor.  
Pulsed currents are applied in the magnetostrictive wire.  
Then, the elastic waves are generated in the wire near the 
magnet installed to moving object.  The elastic wave is 
detected on the edge of the wire, and by counting the delay 
time for pulsed current, it is possible to measure the magnet 
position.  The handling is easy, because the magnet installed 
to the moving object is noncontact with the wire.  However, 
the accuracy is drastically different by the shape of the 
magnetic flux density distribution installed to the moving 
object.  By the change of the waveform of the pulsed current, 
we reported that the measurement accuracy of the displacement 
sensor could be improved [1].  The effects according to the 
magnet size (magnetic flux distribution) to the accuracy are 
examined here. In addition, the methods for reducing the 
error are devised.  Fig. 2 is an example of the results. It is 
shown that it is kept to the error of 0.1 mm or less, even if it 
is the rough setting.
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Abstract
By using a series of quasi-ab initio interatomic potentials, the crystal structures and stabilities of R7Ni3 (R = Nd, Sm, Gd) of 

the hexagonal Th7Fe3-type structure is studied. The calculated lattice constants coincide quite well with experimental values. 
Furthermore, some simple mechanical properties such as the elastic constants and bulk modulus are investigated for these 
materials. The phonon densities of states, vibrational entropy and Debye temperature related to dynamic phenomena are also 
evaluated. This work provides a new method for studying the thermodynamic properties for the rare earth materials with 
complex structures.
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