Attenuated Oscillation of the Tunneling Magnetoresistance in a Ferromagnet-metal-insulator-ferromagnet Tunneling Junction

Sui-Pin Chen^{1*} and Ching-Ray Chang²

¹Department of Applied Physics, National Chia Yi University, 60004, Chia Yi, Taiwan ²Department of Physics, National Taiwan University, 10617 Taipei, Taiwan *Corresponding author: Sui-Pin Chen, e-mail: d89222002@ntu.edu.tw

We apply the spin-polarized free-electron model [1] to study the tunneling magnetoresistance (TMR) in a ferromagnet-metal-insulator-ferromagnet (FM_1 - M_2 - I_3 - FM_4) tunneling junction. Firstly, our calculation shows that the effective spin polarization P_{FM_4,T_3} of the FM_4 - I_3 bilayer is the same as Slonzewski's, but $P_{EM_1-M_2-t_3}$ of the FM_1 - M_2 - I_3 trilayers is modified by $P_{EM_1-M_2-t_3} = P_{EM_1} \cos (2k_{\xi_2}t + \phi_{M_2-t_3} + \pi)$ under one reasonable approximation. The trem P_{EM_1} is the spin polarization of the FM_1 layer, k_{ξ_2} within the M_2 layer is the out-of-plane wave vector, t is the thickness of the M_2 layer, and the phase change $\phi_{M_2-t_3}$ is from the phase difference between the incident and the reflected electrons at the M_2 - I_3 interface. Clearly, $P_{EM_1-M_2-t_3}$, and also the TMR ratio, oscillates with the amplitude of P_{EM_1} and with the period related to $2k_{\xi_2}t$. Secondly, our calculation finds that not only electrons with the out-of-plane energy E_{ξ} close to the Fermi energy E_F but also electrons with E_{ξ} below E_F can tunnel sufficiently through the $FM_1-M_2-I_3-FM_4$ tunneling junction. This is due to the coherence multiple reflective scatterings within the M_2 layer; therefore, the range of E_{ξ} is bounded between E_F and Elow. Thirdly, Fig. 1 in our calculation indicates that the out-of-plane energy dispersion ΔE_{ξ} of tunneling electrons both attenuate the TMR amplitude and increase the oscillatory period, which is in good agreement with the reported experimental data [2].

Fig. 1. The TMR ratios with the thickness of the M_2 layer in three E_{low} and $E_F=1.5$ eV.

REFERENCES

J. C. Slonczewski, Phys. Rew. B 39 (1989) 6995.
S. Yuasa, T. Nagahama, and Y. Suzuki, Science 297, 234 (2002).

CU05

The Shape Dependency of Magnetic Energy Barrier in Nanostructured Magnetic Thin Film

Chang Wan Han and Sang Ho Lim*

Department of Materials Science and Engineering, Korea Univeristy, Seoungbuk-gu, Anam-dong, Seoul, Korea *Corresponding author: Sang Ho Lim, e-mail: sangholim@korea.ac.kr

As the lateral dimension of the magnetic cell in the MRAM approaches to nano scale range, thermal stability (E_M/kT) of magnetic cell is of significant importance, as the magnetic energy barrie (E_M) of nanostructured cell approaches to the thermal energy (kT). Recently, Ikeda et al. reported the results for E_M/kT in single magnetic thin films and an exchange coupled trilayer [1]. The value of E_M/kT is much smaller in single magnetic thin films than that in exchange coupled trilayers. In an effort to understand the origin which causes the large difference in E_M/kT , we calculated E_M/kT in nanostructured single magnetic thin films.

The thin films having lateral dimensions of $160 \times 80 \text{ nm}^2$, which are similar to those reported in the literature, was considered [1]. The thickness (*t*) is varied within 2 to 2.5 nm. In order to consider the effect of edge rouding during fabrication, the shape of thin film was varied from the complete rectangle to complete ellipse by changing the values of *a*, *b* (*a* = 2*b*) as seen in Fig. 1. The magnetic parameters used were: a saturation magnetization of 1034 emu/cc, an induced anisotropy of 10 Oe.

The results for the E_M are shown in Fig. 2 as a function of t and b. Expectedly, E_M increases with increasing t over the whole rangle of b. More importantly, there is a significant difference of E_M depending on the shape of the cell. This result indicates that the E_M/kT can be largely changed with fabrication process condition in the mass production. The shape dependency of E_M/kT in magnetic thin film can acts as another demerit in actural device application.

Fig. 1. The shape of thin films.

Fig. 2. The $E_{\rm M}$ as a function of the shape and thickness of thin film.

REFERENCES[1] S. Ikeda *et al.*, IEEE Trans. Elec. Device. **54**, 991 (2007)