BR15

Electrical and Magnetic Properties of (1-x)CoFe₂O₄-(x)BaTiO₃ Composites

Atchara Khamkongkaeo¹, Teerapon Yamwong², and Santi Maensiri^{1,3*}

¹Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand. ²National Metals and Materials Technology Center (MTEC), Thailand Science Park, Pathumthani, 12120, Thailand ³Integrated Nanotechnology Research Center (INRC), Khon Kaen University, Khon Kaen, 40002, Thailand.

*Corresponding author: Atchara Khamkongkaeo, e-mail: atchara_k@hotmail.com

The magnetoelectric composites, namely $(1-x)CoFe_2O_4$ -(x)BaTiO₃ (CF-BT) in which x varies as 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 1.0 have been prepared by wet ball milling method using nanopowders of CoFe₂O₄ (35-55 nm) and BaTiO₃ (85-128 nm) as starting materials. The compacted CF-BT samples were sintered at 1200°C for 24 hours in air to obtain CF-BT composites. The structure of the sintered CF-BT composites was studied by XRD technique. Morphology of the CF-BT composites was revealed by SEM. The magnetic properties of composite samples were measured using vibrating sample magnetometry (VSM). Room temperature magnetization results showed a ferromagnetic behavior for all the CF-BT composite, having the values of specific magnetic moment (M_s) in the range of 15-46.5 emu/g at 10 kOe. Ms decreased with increasing the BaTiO₃ concentration. The dielectric properties were determined as a function of the temperature ranging from -50 to 200°C at 7 KHz. The dielectric constant did not depend on the parameter x. The effects of parameter x on the electrical and magnetic properties of the materials were discussed.

BR16

Characterization of CoCr2O4 on Pt(111) Grown by Using Pulse Laser Deposition

Kang Ryong Choi, Seung Je Moon, Taejoon Kouh, In Bo Shim, Sam Jin Kim, and Chul Sung Kim*

Department of Physics, Kookmin University, Seoul 136-702, Korea *Corresponding author: Chul Sung Kim, e-mail: cskim@kookmin.ac.kr

 $CoCr_2O_4(CCO)$ materials shows multiferroic effect that ferroelectricity and ferromagnetism co-exist[1,2]. CCO film was deposited on Pt/Ti/Si/SiO₂ substrates by Pulse Laser Deposition (PLD). The CCO film were prepared using KrF(248 nm) excimer lasers and with a pressure of 100 mTorr, substrate temperatures of 700°C. The crystal structure was found to be oriented {111} planes by means of X-ray diffraction (XRD) with Cu radiation. The thickness and morphology of film were measured by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The magnetic properties were measured using a Superconducting Quantum Interference Device(SQIUD). The ferrimagnetic transition was observed at around 95 K, which was determined as Néel temperature and spiral magnetic transition temperature(T_s) was 21.5 K, while the T_s of bulk CCO was 28.0 K. We note that lowering of CCO film in T_s is closely related to the preferred orientation of {111}

REFERENCES

Y. Yamasaki, et al., Phys. Rev. Lett. 96, 207204 (2006).
S. -W. Cheong and Maxim Mostovoy, Nature, 6, 13 (2007).