DESIGN AND IMPLEMENTATION OF U-GIS EVENT
PROCESSING SYSTEM

Moon-Soo Lee, Ju-Wan Kim

Telematics Research Laboratory
Electronics and Telecommunications Research Institute (ETRI)
{mslee, juwan} @etri.re.kr

ABSTRACT: Urban is more intelligent continuously with the help of the convergence with IT technology. And it
requires an integrated control system, which can manage urban facilities or monitor large-scale events based on GIS
data, to provide its citizen with various ubiquitous services such as u-Health, u-Traffic, context-awareness etc. In order
to realize the intelligent city geo-sensors that have the functionalities of generic sensing as well as location awareness
will be established everywhere in the near future. Our system we presented have a rule engine to handle a atomic event
as well as complex events that contain control flow or branch among them. And it can allow for visualization and
monitoring the results through KML (Keyhole Mark-up Language) in the Google Maps. This paper describes a u-GIS
event processing system that can deal effectively with u-GIS events coming from various geo-sensor data in ubiquitous

computing environments.
KEY WORDS: Geo-sensor, Event, GIS, Rule Engine

1. INTRODUCTION

In recent years, unlike traditional monolithic GIS
applications recent GIS works are used in a core engine
among applications and their domain is expanding to that
of business and other IT services. Furthermore, with the
advance in computer technology and wireless sensor
network (WSN), an urban community continuously is
evolved to ubiquitous society called u-City or Eco-City,
and installed infrastructure to gather various kinds of
sensor data occurred in the cities. To realize this ideal
society, it should be able to manage its facilities and offer
diverse context-awareness services like u-Health, u-Home,
u-Environment, context-aware services. Therefore, an
integrated operations and control system for that city
requires to collect and process sensor data, and publish u-
Services.

Urban integrated operations and control system is the
best example of systems applied to convergence between
GIS with business. It will be necessary for citizens to
utilize the ubiquitous services in near future. The system
can collect sensor data from RFID, fixed and mobile
sensors to monitor buildings, traffic congestion,
environments etc. Geo-sensor that can identify location as
well as the status of its surrounding may be also used
extensively.

The important issue in the wide-area wireless sensor
network like u-City is how to handle large volume and
heterogeneous of sensor stream data. Since large-scale
sensor network has hierarchical structure composing of
numerous sensor nodes, gateways and applications, each
layer should be able to exchange huge amount of data and
events to communicate between them. To make matter
worse, there are various different types of sensor nodes to
monitor for specific purposes according to sensing
environments. To overcome these issues a middleware is
required to process the stream data or events effectively,

and must allow for rapid and effortless development of u-
GIS Services.

There can be atomic and complex types to treat events
in the sensor network [7]. The former can be considered
as a value of status in physical environments, while the
latter is a sequence of atomic or its sub-complex events.
There are different methods to construct monitoring
system according to what types of sensor events can be
used. Database of them is more effective and efficient
than middleware in case of atomic event like SQL trigger.
But in the complex event, there is advantage and
disadvantage if each event has branch sequence with
spatial and temporal information.

Complex event processing (CEP) defines atomic events
as well as their geo-spatial relationship as a rule. The rule
is evaluated using the value of sensing data in real-time.
And then CEP provides a proper service for users
according to their circumstance. In general, a complex
event model can be defined a rule that has a sequence and
spatial-temporal constraints. In order to use various
domains, the rule also is described as an explicit language
considering flexibility and extensibility. In the active
database, the Event-Condition-Action (ECA) rule is used
to define complex events like SQL trigger [2, 6]. Its rule
is composed of a trigger event that inquiries the
modification status of columns in data table, conditions
whether the states of specified sensors are satisfied with
their constraints, an action that should be executed or
invoked other rules if the condition is valid. Database is
managing itself internally sensor data and can apply any
type of operation such as base operation, data joining
casily. But there is limit to handle complex events
including a sequence of event rule concerned about the
time constraints. In the middleware complex events is
related with context-awareness technology to focus on
how to support in implementing its services rapidly.
Complex event model using Petri-Net is represented to

- 266 -



tackle concurrent and non-deterministic distributed sensor
network systems [4]. It also proposed authoring tool to

provide a visual picture of the hierarchical event structure.

To provide heterogencous information fusion come from
smart sensors, event based surveillance system supports a
situation modelling method that a can be defined CEP
rule for non-programmer [1]. Considering flexibility,
interoperability, scalability of CEP system its engine can
process the stream data in real-time and integrate with
business applications in different platform like business
process management (BPM) solutions [3]). This paper
depicts the design and implementation of u-GIS event
processing system for CEP coming from the
heterogeneous geo-sensors. Our system including rule
engine can monitor contexts and accidents happing in the
city and provide proper service or response with the
respect to their circumstances. The structure of the rest of
this paper is as follows: Section 2 provides an overview
of the proposed total system architecture. Section 3
describes the functionality of core modules. Finally
Section 4 concludes the paper.

2. SYSTEM ARCHITECTURE
2.1 Architecture

Architecture of u-GIS event processing system consists
of geo-sensor network, u-GIS event processing
middleware and web client as shown in Figure 1.

In general, sensor network is installed for specific and
static purposes such as structures monitoring, urban
surveillance and vice versa. Geo-sensor network is added
geo-sensors contained camera and GPS. It allows for
utilizing temporal as well as spatial sensing data.

Unlike the generic sensors geo-sensor has the
characteristic of a large-volume and heterogeneous sensor
data because of being installed in the wide area and
having position information such as WGS-84. u-GIS
event processing middleware receives data from the
network through TCP/IP, HTTP and web service. And the
collected data will be converted a neutral format that can
be integrated with other sensing data or used to various
domain applications. Results of the middleware will be
transmitted to the client applications with KML format.

Figure 1. System Architecture

The applications download and visualize the documents
having the status of the context. Google Map was used to
examine the proposed system in this paper.

3. U-GIS EVENT PROCESSING MIDDLEWARE

u-GIS event processing middleware we introduce is
illustrated in Figure 2. The middleware is divided to
complex event processing and geo-sensor data
management parts. Complex event processing is to
execute deployed rules during a specific period of time. It
has a memory-based database to store and read sensing
states. Because of effective data management the data can
be deleted automatically with accordance with their
storage management policy. A key reason using off-the
self databases in this paper is that complex event
processing may have many rules to execute efficiently.
And it also requires all of data needed in advance to
cvaluate them. In addition, it provides various spatial
operators such as selection, join and aggregation.

u-GIS Event Processing Middleware

cmemm

Figure 2. u-GIS Event Processing Middleware

3.1 Geo-sensor data management

Geo-sensor data management is able to register, search
and manage the life-cycle of Geo-sensor network (GSN)
adapters. GSN adapter can receive sensing data coming
from gateways in the sensor network. The gateways may
have respective interfaces and communication protocols
according to what types of nodes comprised. There are
two modes in receiving sensing data: push mode and
request/response mode. The former sends messages in
every time when an event occurs, while the latter should
request and receive a sensing data of a specific node.
Therefore, GSN adapter should be able to collect data
regardless of the modes as a software agent. The received
data can be converted to common data format and be
stored into common database.

3.2 Complex event builder

There is limit to be detected contexts happening
through with several sensors in the surveillance of urban
space. Context—awareness in the large-scale area should

-267 -



be also considered spatio-temporal constraints with the
values of sensors of interest. Thus, complex event can be
proper method to meet the requirements. Complex event
builder is to create an event rule including series of events
and their spatio-temporal conditions. To allow for rapid
and effortless development of u-Services, the rule enables
users to integrate context-awareness or business services
in other domain using web service.

The creation process as supported by complex event
builder consists of three steps. The first step is to receive
information about interesting sensor network from a
catalog server and create grouping data table. In general,
a catalog server holds metadata such as network topology,
specification of nodes, update period of sensor data and
vice versa. Builder reads some information of sensors
location installed and that of I/O parameters to the target
network and stores a database commonly used with rule
engine. And then it makes spatial neighbour groups
according to minimum distance among them. Usually,
sensors structured in a sensor gateway are homogeneous
to perform the same goal. But gateways are not.
Therefore, in order to process high level of contexts or
complex events abstracted data in group level based on
their location should be needed.

The second step is to create a rule supporting complex
events. To define an event rule user should be known
about the network in detail not only what kinds of sensors
are required, but also what status values of sensors are
proper. A rule is decomposed into main event and sub
events. Each event has input and output parameters with
respected to their usage. All input variables needed to
execute a rule are defined as an interface of it. They will
be globally referenced by the internal events. The rule is
evaluated using that variables and return results or branch
the next sequence of other events. Simple events can be
made by graphical user interface looks like the table of
Excel editor. Each column defining a condition will be
measured by “AND” logical operation. For example, a
rule applied to the fire alarm will be specified that fire is
occurred if temperature is above 40 degree and humidity
is lower 20 percent. The rule is written by If-Then
programmatic logic as shown in Figure 3.

i1

simeam® U e s ENMIBED bR
ERVUEAE TREEER TN Y zA ez
5| W [akl< A

PO e

£ U TN TPV I S N

TE e x
2 2% hp BX

Figure 3. Example of a fire alarm rule

The final step is to register the rule created above into
rule processing system. After deployment, the rule will be
invoked like a web service. Thus, Complex event builder
publish a rule that is defined I/O parameters and service
name as a WSDL document and a KML file which can be
able clients to download the evaluation results of the rule.
The overall structure of the KML document is shown
below:

<?xml version="1.0" encoding="UTF-8"7>
<! <kml xmlns="http://www.opengis.net/kml/2.2"> -->
<kml xmlns="http://earth.google.com/kml/2.2">
<Document>
<Folder>
<name>Fire Monitoring</name>
<open>1</open>
<Placemark>
<name>Group03</name>
<StyleMap>
<Pair>
<key>highlight</key>
<Style>
<IconStyle>

<scale>1.3</scale>

<lcon>

<href>http://localhost:3080/KMLService/images/fired_icon.png</href>

</Icon>
<hotSpot x="0.5" y="0" xunits="fraction" yunits="fraction"/>
</IconStyle>
</Style>
</Pair>

</StyleMap>
<Point>
<coordinates>127.3707521776642,36.38236614645245,0</coordinates™
</Point>
</Placemark>
</Folder>
</Document>
</kml>

3.3 Rule processing system

Rule processing system is organized as rule builder
service, rule DB and rule engine. The overview of the
system is shown in Figure 4.

3.3.1 Rule builder service: this service is operating in
the servlet container as a web application. The service can
process querying, storing, testing of rules by the request
of rule builder through HTTP protocols, and perform the
CRUD(Create, Read, Update, Delete) job in the Rule DB.

3.3.2 Rule engine: proposed the rule engine is a run-
time framework in the JAVA environments. Rule objects
are executed like normal application in the Java Virtual
Machine. Rule engine is composed of rule repository,
repository cache, engine instance, engine factory and
external interfaces. Rule repository which store and
mange written rule in advance has header information to
execute such as id, object name, return type, etc.
Repository cache has rule data in memory to increase
performance in loading rules in the rule repository every
time it needed. Unlike rule information in the repository
the cache has minimum data needed to be executed and
not preserve management information.

Engine instance is a kind of object instance of rule with
allocated resource. It is created by engine factory once in
a transaction and referenced repository caches.

- 268 -



diinie
Ruls -
Bilder
Service

E4
H
.

Engine Rule DB
o

Rule 0B
Prod. pat

Builder Server Web Application |

o,

" x | Web o - "
«e» : Uanalﬁf i B 1

Rule

WebSarvice
Adagter
Bratistcs
. o)

3 AT e Bais2

Vreb 5 ervice Adapter Web
Hpplicstion

Figure 4. Rule processing system

4. CONCLUSIONS

Recently, GIS applications are positioning as a core
engine to visualize other applications or to increase
understanding of its functionality. They are expanding to
business domain and IT services. Besides, an urban
community continuously is evolved to ubiquitous society.
Integration GIS with WSN is unavoidable relationship in
near future. The important issue in the wide-area wireless
sensor network like u-City 1s how to handle large volume
and heterogeneous of sensor stream data. This paper
describes the design and implementation of u-GIS event
processing system for CEP coming from the
heterogeneous geo-sensors. The system is also compatible
with Google Maps client supporting KML specification.

5. REFRENCES

[1] Museux, N. Vanbockryck, J, 2007, “Event based
heterogeneous sensors funsion for public place
surveillance” Information Fusion, pp. 1-8

[2] U. Dayal, B. Blaustein, 1988, "The HiPAC Project:
Combining Active Databases and Timing Constraints",
Special Issue on Real-Time Database Systems, pp. 51-70

[3] Wei, Mingzhu, Ari, Ismail, 2007,"ReCEPtor : Sensing
Complex Events in Data Streams for Service-Oriented
Architectures” Digital Printing and Imaging Laboratory,
pp- 1-21

[4] Binjia Jiao, Sang H. Son, 2005, "GEM: Generic Event
Service Middlleware for Wireless Sensor Networks",
INSS05

[5] Y. Magid, D. Oren, 2008, “Generating real-time
complex event-processing applications”, IBM Systems
Journal, Vol 47, pp.251~263

[6] D. Zimmer and R. Unland, 1999, “On the semantics of
complex events in active database management systems”.
In ICDE'99, pp. 392—399

[71 K. Romer, F, Mattern, 2004, “Event-based Systems
for Detecting Real-World States with Sensor Networks: A
Critical Analysis”, In DEST Workshop on Signal.
Processing in Wireless Sensor Networks at ISSNIP, Pp.
389-395

5.1 Acknowledgement

This research was supported by a grant (07KLSGCO5)
from Cutting-edge Urban Development - Korean Land
Spatialization Research Project funded by Ministry of
Land, Transport and Maritime Affairs of Korean
government.

- 269 -



