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ABSTRACT: In this paper, ALOS-AVNIR, PRISM, and JERS-1 images are used in a multilayer perceptron neural
network (MLPNN) that relates them to forest variable measurements on the ground. The structure of this MLPNN is a
three layers neural network that contains eight input neurons, 10 hidden neurons and five output neurons. It is shown
that the biomass estimation accuracy is significantly improved when the MLPNN is used in comparison with Maximum

Likelihood algorithm.
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1. INTRODUCTION

Above ground biomass (AGB) is related to many
important components, such as carbon cycles, soil
nutrient allocations, fuel accumulation, and habitat
environments in terrestrial ecosystems. The AGB governs
the potential carbon emission that could be released to the
atmosphere due to deforestation and change of regional

AGB is associated with changes in climate and ecosystem.

Different approaches, based on (1) field measurement
(Brown et al. 1989, Brown and Iverson 1992, Schroeder
et al. 1997, Houghton et al. 2001, Brown 2002), (2)
remote sensing (Tiwari 1994, Roy and Ravan 1996,
Tomppo et al. 2002, Foody et al. 2003, Zheng et al. 2004,
Lu 2005), and (3) GIS (Brown and Gaston 1995) have
been applied for AGB estimation. Traditional techniques
based on field measurement are the most accurate ways
for collecting biomass data. A sufficient number of field
measurements is a prerequisite for developing AGB
estimation models and for evaluating the AGB estimation
results. However, these approaches are often time
consuming, labour intensive, and difficult to implement,
especially in remote areas; also, they cannot provide the
spatial distribution of biomass in large areas. GIS-based
methods using ancillary data are also difficult because of
problems in obtaining good quality ancillary data,
indirect relationships between AGB and ancillary data,
and the comprehensive impacts of environmental
conditions on AGB accumulation. Hence, GIS-based
approaches have not applied extensively for AGB
estimation. The advantages of remotely sensed data, such
as in repetitively of data collection, a synoptic view, a
digital format that allows fast processing of large
quantities of data, and the high correlations between
spectral bands and vegetation parameters, make it the

primary source for large area AGB estimation, especially
in areas of difficult access. Therefore, remote sensing-
based AGB estimation has increasingly attracted
scientific interest.

This paper describes a method for estimating frost
biomass based on both SAR image texture and
multispectral optical image. We intend exploring the
effect of neural networks in improving biomass
estimation.

2. STUDY AREA AND DATA SETS

The study area for this project is the drainage basin of
Shafarood in the north of Iran around the city
Rezvanshahr (figure 1). It is located between
3724N =37°40'N and 48°46'E —49°11TE . 1t is
representative of the rugged mountainous landscape with
various types of trees consist of: Maple, Alder, Conifer,
Beech, Hornbeam, Azedarach and Acorn.

Remote sensing data also consist of: AVNIR-2 and
PRISM images from ALOS and a JERS-1 image. The
JERS-1 image has a spatial resolution of approximately
13m and also, AVNIR-2 and PRISM images have the
spatial resolutions of 10m and 2.5m respectively.

3. PREPROCESSING OF DATA SETS

SAR image consists of two components: backscatter
coefficient, which contains information about the scene,
and speckle fluctuations, which are produced by the
imaging process. Both the radiometric and texture aspects
are less efficient for area discrimination in the presence of
speckle. Reducing the speckle would improve the
discrimination among different land use types, and would
make the usual per-pixel or textual classifiers more
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efficient in radar images. Ideally, this supports that the
filters reduce speckle without loss of information. In the
case of homogeneous areas (e.g. agricultural areas), the
filters should preserve the backscattering coefficient
values (the radiometric information) and edges between
the different arcas. In addition for texture areas (e.g.
forest), the filter should preserve the spatial variability
(textual information).

Many adaptive filters that preserve the radiometric and
texture information have been developed for speckle
reduction. These filters are based on either the spatial or
the frequency domain. Adaptive filters based upon the
spatial domain are more widely used than frequency
domain filters. The most frequently used adaptive filters
include: Kuan, Gamma, Enhanced Lee, and Enhanced
Frost filters (Lee 1980; Frost et al. 1982; Lopes et al.
1990; Kuan et al. 1987). These filters are applied on the
JERS-1 image to find the filter that preserve the texture
information for the study area. The ratio of the original
intensity image to the filtered image enable us to
determine the extent to which the reconstruction filter

introduces radiometric  distortion so that the
reconstruction departs from the expected speckle
statistics.

Suppose that the filters yield the true radar cross section
(RCS),0 > at pixel j. The ratio of the pixel intensity in

the JERS-1 image to the derived RCS, v =Ij/0'. ,

should then correspond to speckle fluctuations alone with
a mean value of one. The mean and standard deviation
(SD) can then be estimated over the ratio images. When
the observed mean value differs significantly from one, it
is an indication of radiometric distortion. If the
reconstruction follows the original image too closely, the
standard deviation would be expected to have a lower
value than predicted. It would be larger than predicted if
the reconstruction fails to follow genuine RCS variations.
This provides a simple test that can be applied to any
form of RCS reconstruction filters. The mean and
standard deviation values of the ratio images are shown in
table 2 for the JERS-1 image.

According to Table 1, the Gamma and Enhanced Lee
filters have better results than others filters in this study.
In this paper the Enhanced Lee filter with size of 5x5 was
chosen after several tests.

Table 1. the mean and SD values of ratio images for
the de-speckling filters

ilters Enhanced | Enhanced
Frost Kuan Lee Gamma
Frost Lee
Mean | 09449 | 0.9476 | 09545 | 09503 0.9656 0.9564
SD 0.0231 | 0.0252 | 0.0224 0.0293 0.0211 0.0211

After reduction the speckle noise, the texture of SAR
image must be measured. Of the many describing texture
methods, the grey-level co-occurrence matrix (GLCM) is
the most common in remote sensing.

Nine texture measures are calculated from the GLCM for
a moving window with size of 5x5 pixels that centered in
pixel i, j of the de-speckled JERS-limage. After the
Gram-Schmidt process, just four texture measures:
contrast, correlation, maximum probability and standard-
deviation were selected as the optimum measures for this
area.

The PRISM image is transformed in the universal
transverse Mercator projection with a WGS84 datum
based on the GPS measurements and is used as the base
map. The GPS measurements are done with two GPSs
that track along the roads of the study area. To place all
data in a unified coordinate system, the AVNIR and
JERS-1 image are registered to this map. Figure 1 is a
red—green—blue (RGB) image overlay of PRISM, AVNIR,
and JERS-1 images respectively of the study area. Red
line indicates the path tracking by GPS.

The co-registered and geo-referenced data sets are used to
extract digital numbers and texture feature vectors

Figure 1. The RGB image overlay of PRISM, AVNIR,
and JERS-1 images respectively. Red line indicates the
GPS measurements

4. BIOMASS ESTIMATION

The co-registered and geo-referenced data sets are used to
extract digital numbers (DN) and texture features from
PRISM, AVNIR, and JERS-1 images respectively. The
data are related to the forest biomass through a
classification analysis. The correspondence between the
remote sensing and ground data is made using PCI-
Geomatica software, where the ground plot GPS
locations are superimposed on the data set. For each of
these points, a 5x5 window around the point is used and
the average DN values of the PRISM and three channels
of the AVNIR images with four texture values of the
JERS-1 image are calculated. The values of these points
(performed a vector for each point with eight elements)
are used as training patterns.

The classification analysis is done with a multi layers
perceptron neural network (MLPNN). A multi layers
neural network is made up of sets of neurons assembled
in a logical way and constituting several layers.
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The network that is used in this study arrange in layers as
following. The number of neurons in the output layer is
taken to be equal to the number of classes desired for the
classification. Here, the output layer of the neural
network used to categorize the image in five classes
should contain five neurons. The input layer has eight
neurons corresponding to the number of attributes in the
input vectors. After the determination of the input layer,
the number of hidden layers required as well as the
number of neurons in these layers still needs to be
decided upon. An important result, established by the
Russian mathematician Kolmogorov in the 1950s, states
that any discriminate function can be derived by a three-
layer feed-forward neural network (Duda et al. 2001).
Increasing the number of hidden layers can then improve
the accuracy of the classification, pick up some special
requirements of the recognition procedure during the
training or enable a practical implementation of the
network. However, a network with more than one hidden
layer is more prone to be poorly trained than one with
only one hidden layer.

To summarize, the structure of multilayer neural network
which was accordingly implemented is a 8-10-5 neural
network (three layers: eight input neurons, ten hidden
neurons and five output neurons) for classifying the data
into five classes.

Training the neural network involves tuning all the
synaptic weights so that the network leamns to recognize
given patterns or classes of samples sharing similar
properties. The learning stage is critical for effective
classification and the success of an approach by neural
networks depends mainly on this phase.

The network is trained by using back-propagation rule
(Paola and Schowengerdt, 1995).

The network is trained when all training patterns have
been learnt. Once the network is trained, the weights of
the network are applied on the data sets to classify into
five classes: classl: Maple, class2: Alder, class3: Conifer,
class4: Nursery and class5: None. Figure 2 shows the
result after classification of the image with the MLPNN.

Figure 2. The classified image for sitel based on the
MLPNN
Class 1: [li}, Class 2: [, Class 3: [, Class 4

, Class 5: |}

Finally, we can estimate the biomass of the classes in the
classified images. This was done for three classes in
figure2 based on the allometric equation. Table 1 shows
the estimated biomass for each class in figure 1.

Table 1 Estimated biomass using MLLPNN classification
for figure 2 by both optical and SAR data

Conifer Alder Maple
Area (ha) 292.934 93.138 326.271
Mean 27.5 29 26.5
height (m)
Mean 40 40 35
DBH (cm)
# of tree 86 86 86
(ha)
Mean 1434 1028 1509
biomass
(kg/tree)
Total 36115.4 28834.04 12091.39
biomass
(tons/ha)

4. CONCLUSION

In this paper, we demonstrated that a MLPNN is more
successful for AGB estimation in forests. Textures in
SAR images also played an important role in improving
AGB estimation performance, especially for those sites
with complicated forest stand structure. A combination of
spectral responses and textures improved AGB estimation
performance comparing pure spectral responses or
textures. The complexity of forest stand structure is the
main factor making the AGB estimation difficult.
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