CHANGES OF SOFTWARE UNIT TESTING TOOL
— ATTOL TO TESTRT

Su-Hyun PARK, Soo-Yeon KANG, Koon-Ho YANG, Seong-Bong CHOI

Korea Aerospace Research Institute, psh@kari.kr.kr

ABSTRACT ATTOL is a software unit testing tool produced by the ATTOL Testware SA in France. It automates the entire
software unit testing process: test plan template and test program generation, test program execution, test result analysis and test
report generation. ATTOL is suited for the development of embedded software as it allows programmers to operate in native and
cross development environments. Particularly, it is used for the development of the flight software which is embedded in the
Communication Ocean Meteorological Satellite (COMS). As the flight software is mission-critical, it requires the strict software
quality and high testing constraints. The flight software of COMS is verified by ATTOL in native and cross platforms. In 2002,
ATTOL was taken over by the IBM Rational Software and has been supplied with the name of Test RealTime (TestRT). The test
process of TestRT becomes different from that of ATTOL as TestRT provides the new functionalities that were absent from ATTOL.
TestRT provides the new features in the test script language, as well. In this paper, we compare the test process of ATTOL to TestRT
with an example of COMS and explain what has been changed in the test script language.

KEY WORDS: Software Unit Testing, ATTOL, Test RealTime

1. INTRODUCTION

1.1 Software Unit Testing

A software unit is the minimal software component
(module) consisting of an application. The software unit
testing is to execute an individual unit with a test plan for
the verification purpose. It is typically performed by a
software developer to verify that a software unit is
correctly implemented.

A test plan identifies the test procedure with a set of
test data. There are a lot of software unit testing tools to
generate a test plan template by analyzing the source code
under test. Testers manually modify the test plan
generated by the automated tool. As well as the test plan
generation, the unit testing tools automate the entire
software unit testing process: test program generation, test
program execution, test result analysis and test report
generation.

Particularly, the unit testing is essential for the mission-
critical software such as avionics, satellite and weapon
systems. Most of the mission-critical software is
embedded in the special purpose hardware. To verify the
correct execution on the target hardware, the unit testing
is performed on the cross development environment
where the target hardware is simulated on the host
computer. On the other hand, the native development
environment is the general test platform to execute the
software on the host computer. For the verification of the
embedded software, the unit testing tools is required to
provide the testers both native and cross development
environment.

1.2 ATTOL

ATTOL is an automated software unmit testing tool
produced by the ATTOL Testware SA in France. It is
suited for the development of the embedded software as it

allows programmers to operate in native and cross
development environment. For example, ATTOL is used
for the development of the flight software of
Communication Ocean Meteorological Satellite (COMS).
Korean geostationary satellite, COMS has been jointly
developed by Korea Aerospace Research Institute and
EADS-Astrium since 2005. The flight software is
embedded in COMS to control the COMS operation. As
one of the mission-critical software, the flight software
requires the strict software quality and high testing
constraints. In case of COMS, the flight software is
verified by ATTOL in both native and cross platforms.

In 2002, ATTOL was taken over by the IBM Rational
Software and has been supplied with the name of Test
RealTime (TestRT). While ATTOL provides the
command-line interface, TestRT supports the graphical
user interface as well as command-line interface for user-
friendliness.

The test process of TestRT becomes different from that
of ATTOL, as TestRT provides the new functionalities
that were absent from ATTOL. TestRT provides the new
features in the test script language, as well. In this paper,
we compare the test process of ATTOL 3.3a to TestRT
7.0 and explain what has been changed in the test script
language.

In this paper, we take an example of COMS. The
COMS flight software is written in ADA language and
verified by ATTOL. Note that both ATTOL and TestRT
support C, JAVA and ADA language. In this paper, we
focus on the ADA programs to illustrate the test process
and to explain the test script language.

2. TEST PROCESS

Figure 1 shows the test process of ATTOL. Source
code under test and the test script are input to ATTOL.
ATTOL provides its own test script language to write a
test plan. Like any language, the ATTOL test script is

-84 -

translated by the test script compiler and converted into a
test program in ADA. The test program is to be compiled
and then linked to all or part of the application being
tested. ATTOL runtime must also be linked to the test
program to take into account the nature of the execution
target. A trace file is created when the test program is
executed. This file will be analyzed by the test report
generator.

The minor difference between ATTOL and TestRT is
the format of the test report. As a test report, both
ATTOL and TestRT generates an intermediate low-
footprint file (.rod files), which is not human-readable.
ATTOL generates the test report in text format (.ro files)
in addition to rod files. On the other hand, TestRT
provides a tool (rod2xrd.exe) to convert the rod file to
xml format (xrd file). The fancier test report in xml
format is open with the TestRT graphical user interface.

The major differences between ATTOL and TestRT
comes from the new functionalities such as Target
Deployment Port (TDP) and the code coverage analysis.

.ph file
(Smme Lode under Test ’ (Test Script))

attolpreproADA
{Test Script Compiler)

Y
(adafie e tdo files
ATTOL RUNTIME) (Ue; Program) ((Comp?gjnce Table

L |

Ada Cornipiler/Linker

Executable Test Binary =

atiolpostproADA
{Test Report Generator)

k)
{Test Report
in Text format)

Figure 1 Test Process of ATTOL

2.1 Target Deployment Port (TDP)

ATTOL runtime is replaced by TestRT TDP. ATTOL
runtime is specific to the compilation sequence and the
target system. The runtime takes care of:

o the characteristics of the compiler used,
¢ the characteristics of the test execution target.

The test program generated by ATTOL is independent
of these two elements. It is therefore possible to execute
the same tests in different environments.

Likewise ATTOL runtime, TestRT TDP enables the
portable tests for use in multiple environments. Testers
shall customize the TDP to execute the test on a different
environment. Basically, IBM provides a set of TDPs for
the widely-used platforms and compiler systems.

TestRT TDP is more powerful than ATTOL runtime in
that it enables the batch processing for the entire software
unit testing. ATTOL automates each step of the software
unit testing process: test program generation, test program
execution, test result analysis and test report generation.
However, testers shall process the unit testing step by step
in command-line interface. On the other hand, TestRT
TDP supports the batch processing for the entire software
unit testing in graphical user interface. In the TDP editor,
testers can specify what actions shall be done each step by
the perl script. The software unit testing process of
TestRT is fully automated thanks to the TDP.

2.2 Code Coverage Analysis

Source Gode under Tast -

‘phufile:
(Tast Script Template)
i attolproproADA
{Test Seript Compiler)
Instrumented Source Cods

‘ada filg
=

Ada Compiter/tinkar

Execitable Test Binary

Figure 2 Coverage Analysis Process of ATTOL

TestRT provides a new functionality to analyze the
code coverage. Code coverage is a measure used in
software testing. It describes the degree to which the
source code of an application has been tested. There are a
number of coverage criteria. For example, condition
coverage is used for the verification of the COMS flight
software. Condition coverage criteria requires every
evaluation point (such as a true/false decision) to be
executed.

Most coverage tools works by adding controls to the
source code under test. In case of the COMS project,

-85-

ATTOL works with a coverage tool, Telelogic
LOGISCOPE to check if the unit test meets the condition
coverage criteria. Figure 2 illustrates how ATTOL works
with a coverage tool. The coverage report is produced by
the coverage analyzer as the result of the test.

Source Code under Test

ptufile
{Test Script Template)
attoipreproADA
(Test Seript Compiler)

.

e file n
(Static Trace File))/

GSmamemed Source 0069

tde .ddt .mdt files
Target Deployment .ada file W
(Port fibrary) { (TestProgram) | | (Cmsmpitll;noehb]e
k
(TCormﬁler/Linker

Exscutable Test Binary

aftolcov 6

{Coverage Analysis aiftestrio
Result)

{Compadnent Test Resuny

aitolposiproADA.
(Test Report-Generator)

{Test Report

Figure 3 Coverage Analysis Process of TestRT

TestRT provides the coverage analysis function
without any coverage tool. TestRT includes the source
code instrumentor (attolada.exe) and the coverage report
generator (attolcov.exe) in itself. The dump file splitter
(atlsplit) splits the trace file into the component test result
and the coverage analysis result. Figure 3 shows how
TestRT performs the coverage analysis.

3. TEST SCRIPT LANGUAGE

The test script language of ATTOL is almost same as
that of TestRT. Generally, the ATTOL test script can be
run with TestRT. The biggest difference is the grammar
for the complex stub definition.

A stub is a dummy software component designed to
replace a component that the code under test relies on, but
cannot use for practicality or availability reasons. A stub
can simulate the response of the stubbed component.
Figure 4 illustrates the concept of the ATTOL stubs.

ATTOL test program

Module Testec

|

ATTOL stubs I

Figure 4 Concept of ATTOL stubs

Figure 5 shows the example of the ATTOL stubs. The
tested unit, main calls the functions from the external unit,
my_math. In order to isolate main unit from the possible
anomalies or regression from my math, the test script (b)
defines the my math as a stub. When the stubbed function
is called, ATTOL checks if it is called with the correct
input parameters (1, 2) and simulates the expected return
value (3).

{a) Program under test : {b) Test script
with my_math; |- - HEADER main
] BEGIN main
package body main'is | DEFINE STUB my math
begin END DEFINE
alpha integer; !
I SERVICE
procedure compute:_alpha is [TEST
begin | ELEMENT
alpha ;= my-math.plus(1, 2); ! VAR main.alpha; INIT=0, EV=3
end; #main.compute_alpha;
FesTUB my mathplus (1 2) 3
end; |- - END ELEMENT
| END TEST
| ENDSERVICE

Figure 5 Example of ATTOL stubs

If necessary, testers can make the stub operation more
complex by inserting native code into the body of the
simulated function. The biggest difference in the test
script language is the grammar for the complex stub
definition. The test script language of TestiRT becomes
more rational than that of ATTOL by adding new features
and by removing old features.

3.1 Global Simulated Variables

In the ATTOL test script, the stub definition can access
the variables from the package, which will be generated
by the test script compiler. TestRT, however, does not
support this feature any more. Instead, TestRT provides
the new feature in the test script language, i.e. the global
simulated variable.

In Figure 6, the ATTOL test script (a) defines the stub
with the variable of the package TTest var simule S 1,
which will be generated by the test script compiler. The
variable Idx stores the number of the calls of the stub
KERNEL.SEND NF _RT CMD. Logically, it doesn’t
make sense that the ATTOL test script accesses the

- 86 -

variable which does not even exist before the compilation
of the test script.

TestRT does not allow the stub definition to access the
variables, which does not exist. Instead, testers can
simulate the global variables by declaring them in the
DEFINE STUB block. The global simulated variables are
used by the functions under test. For example, the TestRT
test script (b) declares a global simulated variable,
nb_call SEND NF _RT_CMD to count the number of the
stub calls. Whenever the stub is called, the variable
nb_call SEND NF_RT CMD is incremented by one.
Eventually, the TestRT test script (b) provides the exactly
same function as the ATTOL test script (a) by the global
simulated variable.

{8) ATTOL test script

DEFINE-STUB KERNEL

#procedure SENC_NF RT_CME (.} is

#ibegic

i (TTes! var_simule- S_ TTest var_ simule_S. - SENC_NF RT.CMD ldx <=:4)
.ther

END DEFINE

(t] TestRT test script

DEFINE STUB KERNEL

#nb_cal SENC_NF RT CMD :integer= 0

‘#procedure SEND:_ NF RT CMD (1.1} is

#begir

#nb cal SENC_NF_RT.CMD = nb_cal_SENC_NF_RT_CMD +~
#1 (nb_cal “SENC_NF_RT.CM{<: 4)

ther

END DEFINE

Figure 6 Stub definition of ATTOL vs. TestRT

Note that the global simulated variables are not
accessible by the test procedure. That is because the test
script compiler does not add the declaration of the global
simulated variables to the stub specification, but to the
stub body. The global simulated variable can be regarded
as the stub-scope variables in that they are visible by the
stub functions and the stub procedures only.

3.2 Communication between stub and test procedure

ATTOL runtime provides an integer array,
attol.user_int for communication between the stub and the
test procedure. TestRT does not support this feature any
longer. In this paper, we propose an alternative plan to
substitute this feature.

In Figure 7, the ADA specification attol.ads (a) is a
part of ATTOL runtime. It declares an integer array,
user_int for communication between the stub and the test
procedure. The ATTOL test script (b) defines the stub
with the reference to attol.user int(1). The variable
attol.user_int(1) can be read and written by both the stub
definition and the test procedure. Note that the ATTOL
test procedure can access the variable of the attol package
without the reference phrase ‘#with attol’. Logically, it
doesn’t make sense in that the test procedure accesses the
variable of the ATTOL runtime, which will be linked to
the test program later.

The test script language of TestRT is more complete
than ATTOL because it does not allow to access the
variable of the TestRT TDP (ATTOL runtime). Ideally,
the test procedure shall be independent from the TestRT
TDP.

For the communication between the stub and the test
procedure, testers can define the extra ADA specification,
global.ads with a global variable user int and then access
the global.user int instead of attol.user int. Note that
both the test procedure and the stub definition shall
include ‘#with global’ phrase.

{a) atiol.ads {c) global.ads
package attol i packaqe gipbal 5
user int: array(1:.10) of integer; user int :integer 1=0;
- end global;

(d) TestRY test soript
{b)ATTOL test script

I

|

1

. {
end attol; |l
1

I

i

I

#with global,
DEFINE STUB KERNEL
#iprocedure READ CURRENT DATA(..)is DEFINE STUB KERNEL
#bagin #with global,
#procedure READ CURRENT DATA(.:)is
VALUE TO' READ i= attoluser int(1); #begin ‘

END DESE # VALUE_TO_READ = global.user. int

SERVICE END DEFINE

TEST.

ELEMENT SERVICE
TEST

;&toluser_intﬂ) =7
STUB.KERNEL.READ :CURRENT. DATA[) "
global.user_int :=1;

END ELEMENT STUBKERNEL READ. CURRENT DATA(+)

|
1
I
|
i
}
]
{ ELEMENT
|
;
!
i
i

ENDTEST

END SERVICE END ELEMENT
END TEST
END SERVICE

Figure 7 attol.user_int and global.user_int

4. CONCLUSION

A software unit testing tool, ATTOL evolved into
TestRT in the point of the test process and the test script
language. The test process of TestRT becomes more
powerful than ATTOL in that it provides the new
functionalities such as the target deployment port and
code coverage analysis. The test script language of
TestRT is more complete than that of ATTOL with
respect to the complex stub definition.

References
2000. ATTOL UniTest Programmer’s Guide v3.4,
ATTOL Testware

2006. IBM Test RealTime User Guide v 7.0.0, IBM
Corporation

-87-

