
 
 

 
 

1. Introduction 
 
   The electrical control of wettability, which is called the 
electrowetting, is a versatile tool for handling of micro- and nano-liter 
droplets. The most commonly used configuration is the so called 
electrowetting-on-a-dielectric (EWOD) in which a thin insulating layer 
is inserted between the liquid and the counter electrode to prevent the 
current flow. The electrowetting can be used as a very fast and efficient 
means to handle nearly any kind of droplets with a relatively low 
electrical potential and power consumption. Potential applications of 
the electrowetting have been demonstrated for the optical switch, 
variable focal lens, micro-pump, micro-mixer, and electronic display 
(see ref. 1, and references therein).    
   The following Lippmann–Young equation (LY equation) has been 
successfully employed in correlating empirical results on the apparent 
contact angle (θ ) with external voltages (V ) [2,3]: 
 

 
   (1) 

    
 
Here, θY denotes the contact angle when V = 0 (i.e., Young’s contact 
angle), ε the electric permittivity of the insulating layer beneath the 
droplet, γ the interfacial tension between the droplet and the 
surrounding fluid, and d the thickness of insulating layer. Above a 
certain voltage, the LY equation becomes invalid due to the occurrence 
of contact-angle saturation. Although several mechanisms have been 
suggested [1], there is no commonly accepted theory on how the 
contact angle saturation occurs. 
   The LY equation was derived by way of the minimum energy 
principle of thermodynamics. [1] Later, Kang [3] has shown that the 
electrowetting is a direct consequence of the concentrated Maxwell 
stress, in which the stress is concentrated within a distance of O(d) from 
the three-phase contact line (TCL). Kang approximated the contact line 
as a straight line to obtain the analytical solution for the electric field. 
He recovered the LY equation by applying the force-balance condition 

at the TCL. Jones[4] and Kang et al.[5] have shown analytically that 
the horizontal component of the electrical force, which is the so called 
the electrical wetting tension, is independent of the interface shape. The 
Maxwell stress acting on an interface causes the deformation of 
interface in the distance of O(d) from the TCL, as manifested by a 
recent experiment of Bienia et al.[6] The interface deformation caused 
by the Maxwell stress has been analyzed numerically by Buehrle et 
al.[7] and Papathanasiou and Boudouvis,[8] and analytically by Bienia 
et al.[6] Buehrle et al.[7] analyzed the interface deformation by an 
iterative numerical method and suggested that the microscopic contact 
angle at the contact line approaches Young’s angle, being independent 
of the Maxwell stress. Bienia et al.[6] deduced a similar conclusion 
based on the method of conformal mapping. It has been questioned 
whether the deformation of interface could have any effect on the 
validity of the LY equation.[7,8] Buehrle et al.[7] obtained the contact 
angle which gives a consistent result to that of the LY equation down to 
5o. Papathanasiou and Boudouvis[8] repeated the analysis of Buehrle et 
al., but their result showed a substantial deviation from that predicted 
by the LY equation. Their result is certainly contradictory to that of 
Buehrle et al. and the macroscopic result of Jones[4] and Kang et al.[5] 
   The LY equation has been derived in several approaches, which 
includes the thermodynamic approach4 and the approach based on the 
macroscopic force balance at the TCL. [2-4] As demonstrated 
previously, [5-7] the change of the macroscopic contact angle in 
electrowetting is associated with the deformation of interface. It is 
expected that the LY equation can be derived in an explicit form 
considering the deformation of interface, under some limiting 
condition. 
   In this work, the equation governing the deformation of interface, 
which describes the local balance of the Maxwell stress and the 
capillary pressure, is integrated along the liquid meniscus to recover 
the LY equation. It is explained how the present approach gives the 
same result to that relying on the macroscopic balance of the forces 
acting on entire meniscus. The microscopic interactions which could be 
involved in the deformation at very close to the TCL are neglected. The 
meaning and the validity of the assumption are discussed. 
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Abstract 
 
For the system of a droplet on an insulator-coated electrode, the Lippmann-Young equation is derived by considering the deformation 
of interface near the three-phase contact line. The equation governing the deformation of interface, which describes the local balance of 
the Maxwell stress and the capillary pressure, is integrated along the interface. The integration leads to the Lippmann-Young equation 
which is shown to represent the macroscopic balance of horizontal force acting on entire meniscus. Young's angle is assumed to be not 
affected by the Maxwell stress. The meaning and validity of the assumption are discussed.  
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2. Analysis 
 
2.1 System 
  
   Consider a two-dimensional droplet in stable equilibrium on a 
horizontal solid substrate, being immersed in another fluid (air or 
liquid) (see Fig. 1). The droplet is assumed to be an electrically perfect 
conductor. The cross-section of the droplet shown in Fig. 1 can be 
imagined to continue normal to the page. Considering the edge region 
as a part of a two-dimensional droplet is equivalent to disregarding any 
effect of circumferential curvature. This simplification may be valid 
when the size of the droplet is sufficiently large compared to the 
thickness of an insulating layer, which is readily satisfied for a 
conventional millimeter-sized droplet. The surrounding fluid region 
and the insulating-layer region are represented by Ωf and Ωs, 
respectively, and the droplet–fluid interface is denoted by Σ. A 
Cartesian (x, y) coordinate system is introduced as shown in Fig. 1. The 
x- and y-axes are parallel and normal to the substrate surface, 
respectively. The arc length s is measured from a point B which is on 
the substrate surface.  
 

   
    
   For the sake of convenience, the meniscus of the droplet around 
the TCL is divided into three regions: the microscopic, intermediate, 
and bulk regions (see Fig. 1). In the microscopic region, which is at 
very close to the substrate, the short-range interaction (e.g., steric 
interaction) and the long-range interaction (e.g., van der Waals 
interaction) are to be significant. The electrical double layer may 
normally be included in this region. The scale of the microscopic 
region is in the order of 100Å. [9] For the sake of convenience, we call 
here those interactions mentioned above the microscopic interactions. 
When there is no Maxwell stress, the tangential angle at the upper edge 
of the microscopic region is defined by Young’s angle which is in fact 
a consequence of the microscopic interactions near the TCL. Note that 
here the Maxwell stress represents the electrical stress induced by the 
externally applied field, disregarding the contribution from the 
electrical double layer.  
   Above the microscopic region, there exists the intermediate region 
where the microscopic interactions become negligible. In this region, 
the Maxwell stress is dominant, and the deformation of interface is 
dominated by the Maxwell stress. As a matter of fact, the Maxwell 
stress is distributed over the microscopic region as well as the 
intermediate region. Accordingly, the Maxwell stress may contribute to 
the deformation of interface in the microscopic region in a certain 
degree. However, if the thickness of the microscopic region ( lm ) 
becomes very thin, the net force acting on the microscopic region by 
the Maxwell stress becomes negligible compared to the net force acting 

on entire meniscus. This condition will be satisfied when m l << d, 
since the thickness of the intermediate region is proportional to d. Here, 
we assume that m l << d. Under this assumption, one can define 
Young’s angle which will be hardly affected by the Maxwell stress. As 
will be discussed later, the conclusion of Buehrle et al. [7] that Young’s 
angle is not affected by the Maxwell stress is deduced by neglecting the 
deformation of interface in the microscopic region, from the beginning. 
   At a sufficiently far distance from the substrate, say 10d ( d is 
normally in the order of micrometer), there is the bulk region in which 
the Maxwell stress becomes negligible. In this region, the deformation 
of interface is governed by the hydrostatic pressure and the capillary 
pressure corresponding to the macroscopic curvature of the droplet, i.e., 
γ / R in which R represents the length scale of the droplet. In fact, the 
LY equation describes the change of contact angle at the lower edge of 
the bulk region. If there is no Maxwell stress acting on the interface, 
Young’s angle corresponds to the macroscopic contact angle. 
 
2.2 Derivation 
 
   We describe the surface profile by a function x = f (y). Then, the 
macroscopic representation of the Helmholtz free energy per unit 
length (F) of a strictly two-dimensional system is written as follows: 

 
    (2) 

 
 

where γsl represents the interfacial tension at solid-liquid interface, γsf  
the interfacial tension at solid-fluid interface, x0 the horizontal 
coordinate of the TCL, εf the electric permittivity of the surrounding 
fluid, and E = | E | the electric-field strength. The first and second terms 
represent the surface energy. The third and fourth terms denote the 
electrostatic energy in the surrounding fluid and the insulating layer, 
respectively. (The contribution of droplet vanishes due to no internal 
electric fields inside a conducting droplet.) 
 Applying the formal variational procedure with respect to f,  
 
 

                        (3) 
 
 
Here, k denotes the local curvature of the droplet surface. Using the 
geometric relation of the local curvature (κ) and the local tangential 
angle (θ) with the arc length (s), Eq. (3) can be written as follows: 
 
 

                                 (4) 
 
 
After multiplying sinq on both sides and integrating both sides with 
respect to s, from B to A, we obtain 
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On the other hand, for the perfect conducting droplet, the electrostatic 
force (per unit length) acting on the droplet surface is represented by 
[2,4] 
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Here, T is the Maxwell stress and n is the outward unit vector normal 
to the droplet surface which can be related to the local tangential angle. 
(n = -i sinθ + j cosθ, where i and j are the unit vector in x- and 
y-direction, respectively.) From the Eqs. (5) and (6), the horizontal 
force balance says  
 

γ
θθ

x
el

BA
F
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If we further assume that the microscopic interactions can be 
represented by Young’s angle, θB = θY. And the horizontal component 
of the electrical force (per unit length) is represented like [4] 
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Finally, we can obtain the Lippmann-Young equation: ( θA = θ ) 
 

       (8) 
 
 
3. Discussion 
 
   In the present work, In the present work, the effect of 
microscopic interactions in the microscopic region is just 
represented by Young’s angle. Let’s consider what this 
simplification practically represents. The Maxwell stress is 
distributed within a distance of O(d) from the TCL. For a 
demonstration purpose, the electrostatic field around a 
hemispherical droplet is analyzed numerically with changing the 
thickness of insulating layer as d/R = 0.2, 0.1, and 0.05, where R is 
the radius of the droplet. The applied voltage is changed to keep 
V/d constant. Figure 2 shows the distribution of the Maxwell stress. 
As shown, as the thickness of the insulating layer gets smaller, the 
region where the Maxwell stress is effective becomes reduced. 
When d is in the order of micrometer, the thickness of the 
intermediate region is much greater than that of the microscopic 
region, and most of stress may act on the intermediate region. In 
this case, Young’s angle may be hardly affected by the Maxwell 
stress.  
   In contrast, consider the case in which d is in the order of 
nanometer, which corresponds to the case of electrowetting on 
self-assembled monolayers.17-21 Then, the deformation of 
interface should be determined by considering the combined effect 
of the Maxwell stress and the microscopic interactions around the 
TCL. In this case, the LY equation may be inappropriate to 
describe the change of contact angle; even, it may be difficult to 
make a distinction between Young’s angle and Lippmann’s angle. 
Consequently, the present assumption of neglecting the 
microscopic region and microscopic interactions may have 
validity only for the case of a sufficiently large d. In electrowetting, 
a complete description for a droplet including the microscopic 
interactions, Maxwell stresses, and capillary pressure, is still 
lacking.[9] 
 

 
 
   Buehrle et al.[7] calculated the microscopic contact angle for a 
fixed macroscopic contact angle by analyzing the deformation of 
interface. They showed numerically that the microscopic contact 
angle approaches to Young’s angle which is calculated by the LY 
equation. Based on this result, they concluded that Young’s angle 
is not affected by the Maxwell stress. They did not, however, 
consider any influence of the microscopic interactions at the 
microscopic region. As shown here, Young’s angle and 
Lippmann’s angle should essentially be related by the LY equation 
as long as the microscopic interactions are neglected. The result of 
Buehrle et al.[7] for the limiting angle (their Young’s angle) is no 
more than a numerical verification of the validity of the LY 
equation. Their conclusion, however, will be valid when d is 
sufficiently large compared to the thickness of the microscopic 
region. 
   The effect of hydrostatic pressure is neglected from the 
beginning. The change of cosθ for a region is related with the net 
horizontal force acting on the region. Thus, we can estimate the 
change of cosθ at the intermediate region caused by the 
hydrostatic pressure as ∆ρgRd /γ . Here, ∆ρ is the density 
difference between in and out of the droplet, and g the 
gravitational acceleration. The Maxwell stress is in the order of 
ε(V / d)2 , and the consequent change of cosθ will be in the order 
of εV 2 /γd . It is evident εV 2 /γd is in the order of 1. When ∆ρ = 
1000 kg/m3, g = 9.81 m/s2, R = 1 mm, d = 10 µm, and γ = 0.02 
N/m, the change of cosθ due to the hydrostatic pressure is as small 
as 5×10− 3. The capillary pressure which is associated with the 
curvature of the macroscopic droplet is in the order of γ / R. 
Therefore, the change of cosθ due 
to the capillary pressure is in the order of d / R, which is usually 
less than 10-2 . 
 
4. Conclusion 
 
   The Lippmann-Young equation was derived considering the 
deformation of interface at the TCL. From the integration of the local 
balance equation of the Maxwell stress and the capillary pressure, we 
recovered the LY equation. In the derivation, the microscopic 
interaction at the TCL was neglected and represented using Young’s 
angle which is assumed to be independent on the Maxwell stress. These 
assumptions will be valid for the case of a sufficiently thick insulating 
layer in which the net electric force acting on the microscopic region 
constitutes only a minor portion relative to the total electrical force. 
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