TF-P52

Effects of growth temperature and post-annealing on Pr_{0.7}Ca_{0.3}MnO₃ film with SrRuO₃ buffer layer for ReRAM applications

Sanghyun Joo, Wan-shick Hong, Kyoungwan Park, and Junghyun Sok

Department of Nano Science & Technology, University of Seoul, 90 Jeonnongdong Dongdaemungu, Seoul 130-743, Korea

There has been a lot of recent interest in the properties of manganites such as $RE_{1-x}A_xMnO_3$ (RE is a rare earth such as La, Pr, Nd, and A is an alkaline earth such as Ca, Ba, or Sr) in particular due to a spectacular decrease of electrical resistance under a magnetic field, the so-called colossal magnetoresistance (CMR). Particularly, $Pr_{0.7}Ca_{0.3}MnO_3$ (PCMO) film is candidate material for the active material in ReRAM device.

Resistance switching behaviors of the $Pr_{0.7}Ca_{0.3}MnO_3$ (PCMO) film with SrRuO₃ (SRO) buffer layers, which were in situ deposited on Pt/Ti/SiO₂/Si substrates by rf magnetron sputtering method, were investigated. The ratio of the resistance change of the PCMO film with SRO buffer layers in the high-resistance state to that in the low-resistance state turned out to be much lager than that of the PCMO film without SRO buffer layers.

The PCMO film was deposited at various substrate temperatures ranging 300°C to 700°C. The ER (ElectroResistance) ratio (R_{high} - R_{low}/R_{low}) increased with increasing substrate temperature. When post-annealing in O₂ atmosphere for 2 hours at 400°C to 600°C after depositing SRO/PCMO/SRO, ER ratio showed improvement. It is thought that the O₂ post-annealing seems to the degradation of oxygen contents and defects in the PCMO film and SRO films. The Mn⁴⁺/Mn³⁺ ratio at the PCMO film surface was changed by oxygen post-annealing, resulting in an increase of the ER ratio.