오디오 채널 신호의 압축을 위한 공간 큐의 효율적 표현 방법

*백승권 김민제 이태진 장대영 강경옥 한국전자통신연구원

*skbeack@etri.re.kr

Efficient Representation method of Spatial cues for audio coding

* Beack, Seungkwon Kim, Minje Lee, Taejin Jang, Daeyoung Kang, Kyeongok Electronics and Telecommunications Research Institute

요약

본 논문은 공간영역에서의 오디오 채널 신호의 압축 방법에 있어서, 공간 파라메터의 효율적인 표현 방법을 제안하려 한다. 대상이 되는 공간 파라메터는 인간청각의 ILD(Internaural Level Difference) 인지와 관련한 공간 파라메터에 관한 것으로 ICLD(Inter-Channel Level Difference) 파라메터의 표현방법 관한 것이다. 본 논문의 목적은, ICLD 의 통계적 특성을 분석하고 이에 충실한 표현방법을 제안함으로써, 양자화 시 기존 표현 방법보다 왜곡율을 개선시킴으로써 복원된 오디오 신호의 충실도를 높이는 것을 목적으로 한다. 따라서 본 논문에서는, 새로운 ICLD 표현 방법을 소개하고 이에 대한 이론적 통계적 근거를 제시하며, 실험결과로써 기존 방법과 비교된 왜곡율 측정(distortion measure) 결과를 제시하여 제안된 방법의 우수성을 입증한다.

1.새론

오디오 신호를 부호화 하는데 있어서 가장 큰 목적은 신호의 잉여성분(redundancy)를 최소화 하고 남아있는 잔여성분 및 대표 성분으로부터 원 신호를 복원하는 것이다. 잉여성분을 최소화 하는 방법에 있어서 기본적으로 수행할 수 있는 것이 시간적(temporal) 접근방법으로, 시간영역 프래임 단위 신호를 분석하고 상관성에 기반하여 잉여성분을 제거하는 것이다[1][2]. 이때 주로, 시간영역 신호를 주파수영역으로 변환하여 분석을 수행하는데, 여기서 대표적으로 적용될 수 있는 방법이 청각심리음향모델을 적용함으로써, 인간이 인지하지 못하는 신호들을 잉여성분으로 간주하고 제거시킴으로써 원신호를 압축할 수 있는 기술이다[1].

최근 들어, 오디오 신호는 고품질 미디어 서비스를 위하여 스테레오 신호를 넘어 다채널 레이아웃(layout)을 갖는 오디오 콘텐츠에 대한 요구 및 소비가 증가하고 있다. 이는 오디오 신호에 대한 대역폭이 채널 수에 비례해서 증가한다는 것과, 기존 시간적 접근방식에 의거한 압축방법으로는 압축효율을 높이는데 한계가 있음을 의미한다. 공간큐 기반 다채널 오디오 부호화 기술(SAC: Spatial Audio Coding)은 이러한 다채널 오디오 신호의 압축효율을 보다 극대화 시키기 위해 최근에 새롭게 소개된 기술이다[3][4][5]. 이는 인간 청각의 인지적 특성을 공간적인 특성까지 고려하여 다채널 신호를 파라메터화할 수 있으며 이를 통하여 채널 수를 줄임으로써 원신호를 압축할 수 있는 기술이다.

본 논문에서는 이러한 SAC 기술에 있어서 공간큐(spatial cue)로 활용되는 파라메터의 성능을 개선하고자 한다. 이는 공간큐를 보다 효율적으로 표현할 수 있는 방법을 제안함으로써 전송을 위한 양자화 과정에서 양자화 에러를 개선하고, 결과적으로 보다 강인한 공간 큐 파라메터를 통한 원신호의 복원을 가능하게 하기 위함이다.

가. 공간 큐(Spatial cue)

공간적으로 사람이 인지하는 음원의 특성은 사람이 두 귀를 이용한다는 것에 기인하여 결정된다. 즉, 다수의 음원이 존재한다 하더라도, 결국 사람의 두 귀를 통해 인지되므로, 모든 음원으로 부터 발생하는 오디오 신호는 인간에게 전달될 때, 청각의 인지적 특성을 고려하여 두 채널의 binaural 신호로 표현 가능하다[5]. 여기서, 두 귀를 이용하여 공간상의 음원의 위치를 구별할 수 있는데, 그 구별을 위한 특징 인자로써, ILD (Interaural Level Difference)와 ITD (Interaural Time Difference)가 대표적 인자이다. 즉, 두 귀가 인지하는 신호의 레벨 차이, 시간 지연 차이가 그 음원의 위치 및 특징을 인간이 인지하는 범위 내에서 나타나게 할 수 있다. 또 하나의 중요 인자로 공간감을 결정하는 IC(Interaural Correlation) 인자를 들 수 있다. 이는 서로 다른 두 음원이 동일한 레벨 차로 전과될 지라도, 상호간의 신호의 상관성 정도에 따라 인지되는 공간감이 달라지는 현상을 표현할 수 있는 파라페터이다.

이러한 주요 인자를 바탕으로 SAC 코덱에 사용되는 대표적 공간 큐는 다음과 같이 정의된다.

- ICLD (Inter Channel Level Difference): 상호 채널(음원)간의 소리의 레벨차
- ICTD (Inter Channel Time Difference: 상호 채널간의 소리의 지연차
- ICC (Inter Channel Coherence): 채널간의 상호 상관성 정도

이는, 두귀로 인지되는 레벨차, 지연차, 공간감은 결국 상호 음원(채널)간의 레벨차, 지연차, 상관도로 매핑 될 수 있음을 의미한다[5]. 따라서 채널 오디오 신호가 음원이 될 때, 각 채널간의

2. 공간 큐 기반 오디오 코비의 게요

레벨차, 지연차 및 상관도를 분석함으로써, ICLD 및 ICTD 등을 예측할 수 있게 된다.

나.SAC 기본 구조

SAC 기반의 다채널 오디오 코더의 부호화기는 그림 1 과 같이 간략하게 나타낼 수 있다.

다채널 오디오 음원은 다운믹스 되며, 이때 각 채널 신호를 분석하여 공간 큐를 추출한다. 다운믹스된 오디오 신호는 모노/스테레오로 기존 오디오 채널을 통해 전송될 수 있도록 하며, 부가 데이터 영역으로 공간 큐들에 대한 정보가 부가정보(side information)으로써 전송된다. 부가정보는 다운믹스 오디오 신호의 부호화된 비트스트림의 잉여영역(ancillary region)에 전송될 수 있으며, 그 데이터량이 채널당 3kbps 정도 소요된다.

결국, SAC 기반 다채널 오디오 복호화기는 이러한 공간 큐를 이용하여 전송된 모노/스테레오 신호로부터 멀티채널 신호를 복원한다.

3. 기존 CLD 표현방법의 문제점

부가정보에서 가장 큰 부분을 차지하는 공간 큐는 ICLD 이다. ICTD 은 헤드폰 재생이 아닐 경우, 다채널 재생시 공간상에서 ITD 로 매핑되기가 쉽지 않으며, ICC 의 경우 기본적으로 하나의 대표 값을 주과수 밴드 별로 전송하고, 대역폭에 여유가 있을 때 그 수를 증가시킨다. 따라서 기본적 채널 신호의 복원은 ICLD 로부터 기인한다고 할 수 있으며, 보다 정확한 ICLD 값은 복원되는 오디오 신호의 충실도를 보장할 수 있게 된다.

ICLD 는 주파수영역에서 서브밴드 별로 추출되며 서브밴드의 수는 대개 20~28 개의 ERB(Equivalent Rectangular Bandwidth) 밴드를 활용한다[1]. ICLD 도 전송을 위해서는 양자화 되어야 하며 무손실 부호화 과정을 거치게 된다. 무손실 부호화 방법으로는 일반적으로 허프만(Huffman coding) 방식이 적용된다. 여기서 양자화 방법은 ICLD 의 확률분포를 분석하고 확률분포에 따라 그 양자화기를 설계한다. 일반적으로 ICLD 는 0 dB 를 중심으로 대칭적인 가우시안(Gaussian) 분포를 갖는 것으로 보고 비선형 양자화기를 적용한다[2][3]. 허프만 방식의 무손실 부호화 방법은 양자화기 인텍스의 확률 분포가 라플라시안(Laplacian)과 같이 가파른(sharp)형태 를 갖게 될 경우 그 압축효율이 높다.

그림 2 는 일반 5.1 채널 콘텐츠에서 추출한 ICLD 의 확률분포함수(probability density function)이다. 그림 2 에서 알 수 있듯이, 일부 주변(ambient) 음원에 대해서는 ICLD 가 대칭적 분포를 가지고 있으나, 대부분의 오디오 콘텐츠에서 분석된 ICLD 값은 대칭적이지 않다. 이는 곧 적절한 양자화기를 설계하기가 쉽지 않고, 입력 콘텐츠의 공간 큐의 확률분포함수에 종속적으로 양자화기가 설계 및 적용되어야만 그 양자화 효율을 극대화 시킬 수 있음을 의미한다. 따라서, 고정되었고 한정된 양자화 레벨을 가지고 효율적으로 양자화를 수행하기 위해서는 모든 다채널 콘텐츠에 대한 ICLD 의 확률분포가 일정하여야 한다. 또한 무손실 부호화기의 압축이득을 극대화 하기 위해서는 그 확률분포의의 경사도(sharpness)가 높아야 한다.

4. 지안하는 ICLD 표현 명예

양자화 효율을 개선하기 위해서는 우선적으로 ICLD 의 확률분포함수가 가파른 경사도를 가질 수 있도록 설계되어야 한다. 본 논문에서는 H-ICLD (Half region - ICLD)를 소개한다. 이는 ICLD 를 추출할 때, 최대 파워를 갖는 채널 정보를 활용하여 ICLD 를 추출함으로써, 추출된 ICLD 는 항상 음의 값을 가지며, 그 경사도 또한 보장받을 수 있다. 먼저 기준채널에 대한 인덱스 정보 rfb는 다음과 같이 얻을 수 있다.

$$rf_b = \underset{1 \le c \le C}{\operatorname{arg\,max}} P_{c,b},\tag{1}$$

여기서 P_{cb} 는 각 채널 c 의 b 번째 서브밴드에 대한 파워로 다음과 같이 정의한다.

$$P_{c,b} = \sum_{n=A_b}^{A_{b+1}-1} \left| S_{c,n} \right|^2.$$
(2)

여기서 A_a 는 서브밴드의 경계정보이다. ICLD 값은 다음과 같이 *rf*a 를 활용하여 추출된다.

$$\begin{split} \Delta L_{c,b}^{h} &= 10 \log_{10} \left(\frac{P_{c,b}}{P_{rf_{b},b} + \alpha} \right), \quad rf_{b} > c \\ \Delta L_{c-1,b}^{h} &= 10 \log_{10} \left(\frac{P_{c,b}}{P_{rf_{b},b} + \alpha} \right), \quad rf_{b} < c. \end{split}$$
(3)

ΔL^h_{c,b} 는 새롭게 추출된 ICLD 값이며, 기준채널은 수학식 1 에 의해서 결정된다. 이러한 ICLD 값은 양자화 되고, 허프만 부호화 된 후 복호화기에서 다음의 과정을 거쳐 채널 신호의 정보를 복원한다. 먼저 각 채널의 서브밴드의 파워 이득은 수학식 4,5 를 이용하여 추출될 수 있다.

$$G_{ref,b} = \frac{1}{\sqrt{1 + \sum_{i=1}^{C-1} 10^{\Delta L_{i,b}^{h}/10}}}.$$
 (4)

 $G_{c,b} = 10^{\Delta L^{h}_{c,b}/10} G_{rf_{b},b}, \quad c < rf_{b}$ $G_{c\,b} = 10^{\Delta L^{h}_{c-1,b}/10} G_{rf_{b},b}, \quad c > rf_{b}$ (5)

여기서, $G_{c,b}$ 채널 c 의 서브밴드 b 에서의 파워이득이다. 이러한 파워이득은 서브밴드 별로, 전송된 다운믹스 모노/스테레오 오디오 신호에 적용되며, 이로부터 각 채널의 신호의 파워를 얻는다.

$$U_{c,k} = G_{c,b}S'_{k}, \quad A_b \le k \le A_{b+1} - 1, \tag{6}$$

여기서 $U_{c,k}$ 는 복원된 채널 c 의 주파수 계수 k 성분을 나타내며,

 $S_{k}^{'}$ 는 전송되는 다운믹스 신호의 k 번째 주파수 성분을 나타낸다.

이렇게 추출된 H-ICLD 값은 항상 음의 값을 가지므로, 단방형(single-side) 양자화 테이블을 이용할 수 있으며, rfs 를 활용함으로써 0 dB 를 기준으로 높은 경사도의 확률분포 를 얻을 수 있다. 단방향 양자화 테이블을 이용함으로써 비트전송률을 줄일 수 있을 것으로 기대되나, 추가적인 rfs 를 전송해야 하므로 전체 비트전송률은 유사할 것이다. rfs 는 run-length-coding 방식으로 전송된다. 표 1 은 H-ICLD 와 기존의 ICLD 의 양자화 인덱스 표준편차를 나타낸다. 여기서, H-ICLD가 보다 작은 표준편차를 갖기 때문에 양자화 테이블의 설계 시 보다 작은 dynamic range 안에서 그 값을 표현할 수 있음을 알 수 있다.

표 1. 기존 ICLD vs. H-ICLD 의 표준편차.

Contents	Ambience	Classical	Popular
Cue(dB)	sound	music	music
C-ICLD	3.653	5.334	17.148
H-ICLD	2.673	4.806	12.030

5. 실험권과

가. 주파수 왜곡율 측정

객관적 실험지표로 주파수 왜곡율을 측정하였다. 왜곡율은 Kullback-Leibler 거리측정방법을 사용하였다[12].

$$D_{SKL} = \int (P(\omega) - Q(\omega)) \log \frac{P(\omega)}{Q(\omega)} d\omega.$$
⁽⁹⁾

여기서 *P*(ω) 는 원신호의 주파수 파워를, *Q*(ω) 는 복호화된 신호의 주파수 파워를 나타낸다. 왜곡율은 프래임별로 측정한 뒤 전체 평균값을 취하였다. 실험콘텐츠는 MPEG 오디오 표준화 그룹에서 사용한 MPEG Surround 테스트 아이템 11 개를 사용하였다. Δ*L*_{max} 는 양자화 수행시 dynamic range 로, 18, 24, 30dB 로 변화하여 양자화 에러를 측정하였다. 양자화 레벨은 7, 15, 31 로 변화하여 측정하였으며, 기존 방법에 대해서는 대칭적 midtread 양자화기를 적용하였고, 제안한 방법에 대해서는 음의 값의 비대칭적 midtread 양자화기를 적용하였다. 그림 3 은 실험 결과이다. 실험 결과에서 알 수 있듯이, 모든 양자화 레벨, dynamic range 에 대해서 제안한 H-ICLD 에 의해 합성된 오디오 신호가 원신호 대비 평균 주파수 왜곡율이 적음을 알 수 있다.

그림 3. 축적된 D_{SKL} 기반의 성능

나. 비트전송들 측정

기존 ICLD 및 제안한 H-ICLD 의 비트전송률을 각각 측정하였다. 기존 ICLD 의 비트전송률은, 11 개의 멀티채널 콘텐츠를 기반으로 설계한 허프만 테이블을 이용하는 무손실 코딩방식을 적용했을 경우의 비트전송률 결과를 조사하였다. 본 허프만 테이블은 기존 ICLD 의 통계적 특성을 기반으로 하여 설계된 것으로, 그 성능이 최적화 되어 있다고 볼 수 있다. 제안한 방법의 비트전송률은, 우선 H-ICLD 의 양자화 인덱스는 기존 ICLD 와 같은 방법으로 양자화 테이블을 이용하였으며, 이전 값과의 차이(difference)를 구하여 그 인덱스에 대한 비트전송률을 구한 것이다. 기준채널 인덱스에 대해서는 run-length coding 을 수행하였다. 수행결과, 제안한 방법의 H-ICLD 의 비트전송률이 기존 ICLD의 같은 레벨에서 비트전송률보다 증가함을 알 수 있다. 그러나 H-ICLD 는 단면의 대칭적 양자화기를 사용하므로, 실제 그 비트전송률은 한단계 위의 기존 ICLD 의 비트전송률과 비교해야 분해능이 동일하다. 예를 들어, H-ICLD 7Q 는 ICLD 의 15Q 와 같은 양자화 분해능을 갖는다고 볼 수 있으며, 이를 비교하는 것이 적합하다. 따라서, 표 2 에서 알 수 있듯이, 같은 양자화 레벨에서는 제안한 방법의 비트전송률이 크나, 동일한 분해능을 갖는 양자화기 레벨을 고려해 보면, 오히려 3~5kbps 정도의 비트전송률 감소가 있음을 알 수 있다.

Q(kbps)	7Q	15Q	31Q	64Q
C-ICLD	12.47	15.62	24.86	31.05
H-ICLD	15.77	18.61	27.72	34.05

표 2. 기존 ICLD vs. H-ICLD 의 비트레잇

6. **4**E

본 논문에서는 SAC 기반의 다채널 오디오 코딩을 위한 공간 큐의 표현방법에 대해서 연구하였다. 특히 공간 큐로 가장 큰 부분을 차지하고 있는 ICLD의 표현방법 및 양자화 방법에 대해서 언급하였다. 실험결과 기존의 ICLD 표현 방법 및 양자화 방법보다 양자화 왜곡이 적음을 실험결과를 통해 알 수 있었다. 향후 H-ICLD 를 위한 비선형 양자화기를 보다 면밀히 설계하고 이를 기반으로 하는 허프만 테이블을 구축함으로써, 비트전송률에 대한 성능 개선도 추가적으로 기대할 수 있을 것이다. 또한 주관적 음질 평가를 통해 음질 향상 여부도 조사할 예정이다.

7. References

- [1] M. Bosi, K. Brandenburg, S. Quackenbush, L. Fielder, K. Akagiri, H. Fuchs, M. Dietz, J. Herre, G. Davidson, and Y. Oikawa, "ISO/IEC MPEG-2 advanced audio coding," *J. Audio Eng. Soc.*, vol. 45, pp. 789-812, Oct. 1997.
- [2] J. D. Johnston, S. R. Quackenbush, J. Herre and B. Grill, "Review of MPEG-4 general audio coding," *Multimedia*, *Systems, Standards, and Networks*, pp. 131-155, A. Puri and T. Chen (ed.), Marcel Dekker, Inc. 2000.
- [3] J. Herre, H. Purnhagen, J. Breebaart, C. Faller, S. Disch, K. Kjörling, E. Schuijers, J. Hilpert, and F. Myburg, "The reference model architecture for MPEG Spatail Audio Coding," *AES 118th Convention*, Barcelona, Spain, May 2005.
- [4] J. Breebaar, J. Herre, C. Faller, J. Rödén, F. Myburg, S. Disch, H. Purnhagen, G. Hotho, M. Neusinger, K. Kjörling, W. Oomen, "MPEG spatial audio coding / MPEG Surround: overview and current status," AES 119th Convention, New York, NY, Oct. 2005
- [5] C. Faller and F. Baumgarte, "Binaural Cue Coding Applied to Stereo and Multi-Channel Audio Compression," in Preprint 112th, Conv. Aud. Eng. Soc., May 2002.
- [6] C. Faller and F. Baumgarte, "Binaural Cue Coding Applied to Audio Compression with Flexible Rendering," in Preprint 115th, Conv. Aud. Eng. Soc., Oct. 2002.
- [7] C. Faller and F. Baumgarte, "Binaural Cue Coding-Part II: Schemes and Application," IEEE Trans. on Speech and Audio Proc., vol. 11. no. 6, Nov. 2003.
- [8] C. Faller, "Parametric Coding of Spatial Audio," Proc. 7th Int. Conf. on Digital Audio Effects, Naples, Italy, Oct. 2004, pp. 151-156.
- [9] ISO/IEC JTC1/SC29/WG11 (MPEG), "Call for Proposal on Spatial Audio Coding," Document N6455, March 2004.
- [10] ISO/IEC JTC1/SC29/WG11 (MPEG), "Procedures for the Evaluation of Spatial Audio Coding Systems," Document N6691, Redmond, July 2004.
- [11] E. Zwicker and H. Fastl, Psychoacoustics, Spreinger, Verlag, Berlin Heidelberg, 1999.

[12] E. Klabbers and R. Veldhuis, "Reducing Audible Spectral Discontinuities," IEEE Trans. On. Speech and Audio Proc. vol. 9, no. 1, JAN. 2001, pp. 39 – 51.