

Towards a Next Generation
of Data Capture Architecture of Honeynets

Yong-Kyung Oh, Inhyuk Kim, and Young Ik Eom
School of info. and Comm. Eng., Sungkyunkwan University

email: kenshin579@skku.ac.kr, {kkojiband, yieom}@ece.skku.ac.kr

Abstract

Honeynets have become one of essential tools in system and network security. As the importance of security
has increased over the years, many researchers try to improve the overall Honeynet architecture. Due to their
efforts, the Honeynets have evolved up to the third generation. However, the GenIII architecture has some
limitations. In this paper, we address some of the limitations and provide solutions by redesigning the framework
of data capture of Honeynets.

1. Introduction

Traditionally, when it comes to internet-based attacks,
network system administrators who believe there is
malicious activity on one of his networks will simply go
through each log such as server, firewall, or system to find
any problems. It is almost impossible for system
administrators to distinguish malicious connections from
legitimate activity due to large amount of collected data in
the system. They have to go through different security tools
manually to detect attacks and further they have to make
some changes to prevent those attacks that might be occurred
again in the future. Honeynets make all these processes much
easier because all those tedious jobs such as collecting and
analyzing the data are done by a computer.

A Honeynet is a type of honeypot[8]. Specifically, it is a
high interaction honeypot designed to capture extensive
information on threats. In a high interaction honeynet, the
host systems have real operating systems, applications, and
services for attackers to interact with, as opposed to low
interaction honeypots such as Honeyd which only provides
emulated services and operating systems[1]. Basically, a
Honeynet consists of many honeypots which are networked
together. Any interaction with Honeynets implies malicious
or unauthorized activity has occurred as opposed to
interaction with Honeypots. As a result, the Honeynets are
well suited for capturing the unauthorized activity. However,
Honeynets do collect a hugh amount of detailed data which
makes difficult to maintain and extract the useful information.

This research was supported by the MKE(Ministry of Knowledge
Economy), Korea, under the ITRC (Information Technology Research
Center) support program supervised by the IITA(Institute of Information

Technology Assessment) (IITA-2008-C1090-0801-0027)
Due to the difficulties of Honeynet deployment and

management, the Honeynet Project’s Honeywall[6] has been
developed. The Honeywall is a linux distribution which
contains all of the security tools and functionality necessary
to quickly create, easily maintain, and effectively analyze
Honeynets data. The current Honeywall uses GenIII
architecture which is proposed by Balas and Viecco[2].
Figure 1 shows proposed scheme which provides a central
way to gather and combine each of these data sources into a
composite relational model. For the data analysis part, they
also developed Walleye, a GUI web-based interface, to
improve the analyst’s capability to quickly perceive the
intrusion sequence.

Fig. 1. The GenIII Data Collection Architecture

제30회 한국정보처리학회 추계학술발표대회 논문집 제15권 제2호 (2008. 11)

1469

The GenIII Honeynet architecture has improved a lot over
GenII architecture, but it suffers from a number of
limitations: First, the GenIII has a single point of failure for
both Hflowd and the traffic recorder. There is significant
impact on the operation of the Honeynet if Hflowd daemon
fails, because it is the core component to collect and combine
each data generated from different security tools. The second
limitation is that the failure of traffic recorder. Without the
traffic recorder, full analysis of network packets would not be
available. Lastly, Hflowd daemon does not detect and solve
any failures of components. If one of components fails, then
analyst would be looking at the flawed process data and may
not be able to detect any attacks.

In this paper, solutions to the listed problems in GenIII
architecture are presented and the remainder of this paper is
organized as follows: Section 2 introduces some related work.
Section 3 presents our solutions to the GenIII limitations by
introducing new design of our proposed architecture. Finally,
we give our conclusions on proposed architecture and discuss
future work in the last section.

2. Related Work

The Honeynet project is a collaborative project which has
bundles of open source data analysis tools for honeynet/
honeypot data. There are many other related research and
tools related to the work presented in this paper.

Honeysnap[5] is another tool from the Honeynet project.
It is a modular python application that can parse and perform
data analysis on honeynet data. This tool has very minimal
dependency on third party executables like tcpflow, and is
able to provide analysts with a starting point for more
detailed forensic analysis.

There is also a commercial version, HSC (Honeynet
Security Console)[4], to analyze honeynet data. The console
is only available for Windows 2000/XP platform, and gives
the user ability to view events from Snort, TCPDump,
Firewall, Syslog, and Sebek logs. It also gives a complete
view of the attacker’s actions by correlating each of these
data types. It has a nice GUI interface and it is free, but no
longer maintained by the company.

Like the Argus Flow Monitor, King and Chen[9] developed
Backtracker tool to help system administrators to be able to
easily analyze intrusion by reconstructing a timeline of events
that occur in an attack. The tool can identify files and
processes that could have affected, and display the chains of
events as a dependency graph like in Figure 2, leading to a
quicker identification of the vulnerability.

Fig. 2. Backtracker: a Dependency Graph

Typical system loggers do not log sufficient information to
recreate or understand all attacks. Due to its lack of
completeness and integrity of current system loggers, ReVirt
has been proposed by Dunlap[3]. ReVirt logs enough
information below the virtual machine which is able to
replay the complete, instruction-by-instruction execution of
the virtual machine. Using this type of replay, system
administrators can easily analyze intrusions.

3. Our Proposed Architecture

Fig. 3. Next Generation of Data Collection Architecture

제30회 한국정보처리학회 추계학술발표대회 논문집 제15권 제2호 (2008. 11)

1470

Figure 3 provides a revised version of the GenIII
architecture. In the diagram, Hflowd is placed below and
above the security tool, as opposed to only placed once like
in the previous version. In fact, only one Hflowd daemon is
running, but this is just to illustrate the fact that new version
takes care of both ends, front and back. The Hflowd
(frontend) initiates and starts all security components instead
of each component starting on its own. Additionally, the
frontend checks status of each component to make sure that
all the dependent component processes are up and running. It
prevents analyzing the inconsistent data. As in the previous
architecture, the backend receives Argus flow, Snort IDS, P0f
OS fingerprints and Sebek Data, and then these data sources
are combined and inserted into a database. The backend also
receives traffic flow and stores full packet capture in pcap
file. pcap_api tool is modulated within Hflowd daemon and
it is used to extract raw data dynamically using the database
ID corresponding to a flow in the Hflow database as input.
The tool extracts the captured data based on time and IP
header information.

The following table shows the matching between capture
tools and different data categories.

Table 1. Mapping between Capture Tools

and Data Categories
Tools Flow Host Process File
Argus Yes
P0f Yes Yes
Snort Yes
Sebek Yes Yes Yes Yes

The GenIII architecture has a single point of failure for

both parts, one in traffic recorder and the other in Hflowd.
Even looking at our proposed version, it is apparent that
Hflowd daemon still has a single point of failure. However,
our proposed version has reduced one single point of failure
by making traffic recorder part of Hflowd daemon. It seems
that it has not made any differences, however, the use of
connection counting in the IPTables features[7], we can
protect both components from many of attacks essentially
attacks like Denial of Service (DoS) type. The connection
counting limits the number of outbound connections a
honeypot can initiate within a period of time. Once the
threshold is reached, the new outbound connections are
denied. For different protocols, the connection limits can be
set by reconfiguring the rc.firewall script like in Figure 4.

SCALE="day"
TCPRATE="15"
UDPRATE="20"
ICMPRATE="50"
OTHERRATE="15"

Fig. 5. rc.firewall Script

Here, from a single machine, 15 outgoing TCP

connections are allowed per day. If the connection limit is
reached, then 15 more connections will be allowed in the
next 24 hours.

Unfortunately, the connection counting has a tradeoff
between getting more valuable information and hardening
the system. If more outbound connections are allowed,
identifying a system as the honeypot will be harder, but an
attacker has more ways to abuse the honeypot.

We can use Snort-Inline[10] to secure even further,
shifting the system from Intrusion Detection System (IDS) to
Intrusion Prevention System (IPS). Snort-Inline accepts
packets from iptables, via the use of a kernel module named
ip_queue and tells iptables to drop or accept the specific
packet like in Figure 5.

Fig. 5. Packet Flow of Snort_Inline

Snort-Inline is used to detect malicious traffic and take
different actions against that traffic. Snort-Inline can either
drop or disable known attacks, and it can also modify the
contents of the actual attacks, disable the exploit. By using
IPTables with Snort-Inline, we can improve the protection of
the GenIII architecture.

4. Conclusion and Future Work

In this paper, we pointed out three limitations of Honeynet
GenIII architecture and gave solutions by modifying the
architecture. First, we added the extra work of Hflowd

제30회 한국정보처리학회 추계학술발표대회 논문집 제15권 제2호 (2008. 11)

1471

daemon at the front guarantees that each component can
generate each data and provided good analysis. In addition,
with the help of connection limiting feature in IPTable, we
protected the single point of failures that existed in GenIII.

In the future work, we plan to implement our proposed
version and demonstrate that our solution gives full
protection of the attacks that may have existed in the GenIII
architecture.

References

[1] Developments of the Honeyd Virtual Honeypot,
http://www.honeyd.org

[2] E. Balas and C. Viecco, “Towards a third generation data
capture architecture for honeynets,” Proc. of the 6th
Information Assurance Workshop, IEEE, 2005.

[3] G. Dunlap, S. King, S. Cinar, M. Basrai, and P. Chen,
“ReVirt: Enabling Intrusion Analysis through Virtual-
Machine Logging and Replay,” Proc. of the 2002
Symposium on Operating Systems Design and
Implementation (OSDI), 2002.

[4] Honeynet Security Console, http://www.activeworx.org/
Programs/HoneynetSecurityConsole/tabid/61/Default.aspx
[5] Honeysnap, https://projects.honeynet.org/honeysnap
[6] Honeywall, https://projects.honeynet.org/honeywall/wiki
[7] Know Your Enemy: Honeywall CDROM Eeyore,

http://www.honeynet.org/papers/cdrom/eeyore
[8] N. Provos. “A Virtual Honeypot Framework,” Proc. of the

13th USENIX Security Symposium, 2004.
[9] S. King and P. Chen, "Backtracking Intrusions", Proc.

of the 2003 Symposium on Operating Systems Principles
(SOSP), 2003.

[10] Snort-inline, http://snort-inline.sourceforge.net

제30회 한국정보처리학회 추계학술발표대회 논문집 제15권 제2호 (2008. 11)

1472

