
개선된 PF_RING을 이용한 고성능 패킷 캡쳐

단조 *, 김용수*

*
경원 학교 IT 학

e-mail:chaoyi_duan@hotmail.com, kimys@kyungwon.ac.kr

Improved PF_RING for High Performance Packet Capture

Chao Yi Duan*, Yong Soo Kim*

*IT College, Kyungwon University

Abstract
 The packet capturing becomes a bottleneck in the network intrusion detection and monitoring system as
the network performance developing. Many approaches, zero copy, interrupt coalescing and NAPI which
attempt to improve packet capturing performance of Linux, are inefficient. PF_RING is a new type of
network socket that dramatically improves the packet capture speed, but not perfect. This paper proposes
some solutions which can improve the memory utilization and save some data copy time based on the
commodity network adapters rather than on the commercial network adapters.

1. Introduction

 On the past several years, people tried to improve

the performance of packet capture on host PC not only

on the software side but also on the hardware side.

There are many packet capture tools, such as

Tcpdump[1], Ethereal[2], Snort[3], nProbe[4],

PF_RING[5] and nCap[6] and so on. All of them are

based on a popular programming library called

libpcap[7] which provides a high level interface to

packet capture. This library is very useful but not

perfect because of many limitations to capture packets

on Linux.

 Besides, there are many approaches such as zero

copy[8], interrupt coalescing[9] and NAPI[10] and so on

which are not efficient to solve packet capturing

performance of Linux. PF_RING is a better way.

 PF_RING is a high speed packet capture library that

turns a commodity PC into an efficient and cheap

network measurement box suitable for both packet and

active traffic analysis and manipulation. Moreover,

PF_RING opens totally new markets as it enables the

creation of efficient application such as traffic balancers

or packet filters in a matter of lines of codes.

 The PF_RING creates a new type of socket

(PF_RING) optimized for packet capture that is based

on a circular buffer (ring buffer) where incoming

packets are copied.

 The advantages of a ring buffer located into the

socket are manifold, including:[11]

(1) Packets are not queued into kernel network data

structures.

(2) The mmap primitive allows userspace applications

to access the circular buffer with no overhead due to

system calls as in the case of socket calls.

(3) Even with kernel that does not support device

polling, under strong traffic conditions the system is

usable. This is because the time necessary to handle

the interrupt is very limited compared to normal packet

handling.

(4) Implementing packet sampling is very simple and

effective, as sampled packets do not need to be passed

to upper layers then discarded as it happens with

conventional libpcap-based applications.

(5) Multiple applications can open several PF_RING

socket simultaneously without cross interference (e.g.

the slowest application does not slow the fastest

application down).

Figure 1. PF_RING Socket Architecture

제30회 한국정보처리학회 추계학술발표대회 논문집 제15권 제2호 (2008. 11)

1012

 Memory and time always are the very important

issues on high performance software. For PF_RING, the

ring buffer will take too much memory if there are so

many PF_RING sockets created. And the data copy

time will be the bottleneck when mass packets are

captured on the network adapter especially the gigabit

network adapter. In this paper, we propose some

solutions to reduce the ring buffer size and save the

data copy time when moving the packets into the ring

buffer.

2. Motivation

 In the PF_RING socket, the ring buffer is allocated

when the socket is created, and released when the

socket is deactivated. Different sockets will have a

private ring buffer. In other words, every user

application has its own PF_RING socket. If there are

quite a number of user applications, there will be quite

a few ring buffers which take up too much memory.

Therefore, it’s a good idea to reduce the memory

allocated. But the each socket one ring buffer solution

can avoid the interaction between the different

applications because the slowest application does not

slow the fastest application down. According to the

ring buffer element number can be set by the

application, the only way is to reduce the ring buffer

element memory requirement.

 In the PF_RING socket, the ring buffer element

consists of list_head structure and sock structure. We

don’t parse the packet in the kernel and the sock

structure is very large because it includes too much

information which is not useful besides the socket

buffer structure (sk_buffer). In this paper, we propose a

new structure called pf_buff structure which is very

simple but very useful instead of sock structure.

 Whenever a packet is received from the adapter

(usually via DMA, direct memory access), the driver

passes the packet to upper layers (on Linux this is

implemented by the netif_receive_skb() and netif_rx()

functions depending whether polling is enabled or not).

In case the PF_RING socket, every incoming packet is

copied into the socket ring buffer or discarded if

necessary. (e.g. in case of sampling when the specified

sample rate has not been satisfied). In this copy

operation, we do nothing else but copying packet data

into ring buffer because the packet data has to be

transferred to the application without being modified.

The copy operation wastes much time and much

memory, this paper proposes a function called

skb_clone() which just copy the socket buffer pointer

rather than the packet data instead of skb_copy()

function.[12]

Figure 2. Copying socket buffer

Figure 3. Cloning socket buffer

 Figure 2 shows the situation before and after

skb_copy() function is called and Figure 3 shows the

situation before and after skb_clone() function is called.

From these two figures, we can clearly see that in

skb_copy() function we have to allocate another

memory to copy the packet data storage, but in

skb_clone() function, we don’t need to do that.

3. Our proposals and implementation

 In order to reduce the ring buffer element memory

requirement, we propose a new structure called pf_buff

as following:

Figure 4. The pf_buff Structure

 In this new structure, the variable sk_family shows

the socket family, in PF_RING socket, it is PF_RING;

the structure pointer skb points to the socket buffer

which contains the receiving packet; the pointer

제30회 한국정보처리학회 추계학술발표대회 논문집 제15권 제2호 (2008. 11)

1013

Parameters Configuration

OS Release Version Fedora Core release 6
OS Kernel Version Linux 2.6.25.3

Network Adapter 100baseTx-FD

CPU Property Intel(R) Xeon(TM) CPU
 3.00GHz

CPU Number 4
Memory Size 2GB

Ring Buffer Element PF_RING Improved
PF_RING

Sock structure 448 Bytes --
Pf_buff structure -- 12 Bytes

List_head structure 8 Bytes 8 Bytes

Packet Size PF_RING Improved
PF_RING

64 Bytes 228 Bytes 164 Bytes
512 Bytes 676 Bytes 164 Bytes
1500 Bytes 1664 Bytes 164 Bytes

sk_protinfo indicates the protocol operations; the

function pointer sk_destruct() points to the function

which will destruct the sock structure. In this structure,

we discard so many items which are not used in the

PF_RING socket.

Figure 5. The Original Ring Buffer Element Stucture

Figure 6. The Modified Ring Buffer Element Structure

 Figure 5 shows the original ring buffer element

structure and Figure 6 shows the modified ring buffer

element structure. In our experiment, we use pf_buff

structure to replace the sock structure. In Figure 4, we

can see that the pf_buff structure is very small which

can save much memory every socket.

 Skb_copy() function creates a copy of the socket

buffer, copying both the sk_buff structure and the

packet data. It spends too much time and memory to

call alloc_skb() function which allocates memory for a

socket buffer structure and the corresponding packet

memory. Skb_clone() function also creates a new socket

buffer; however, it allocates only one new socket buffer

structure, and no second space for packet data. The

pointers of the original sk_buff structure and of the

new structure point to the same packet data space.

This allows us to prevent the time-intensive copying of

a complete packet data space when a packet is to be

copied into the ring buffer. The memory containing

packet data is not released before the variable datarefp

contains a value of one (i.e., when there is only one

reference to the packet data space left). So in this

paper, we make skb_clone() replace of the skb_copy()

to save the CPU time and memory when the incoming

packets are copied into the ring buffer.

4. Experiments

 In our experiments, we make a Linux server

installed Fedora operating system as our experimental

platform. And we compare performances of PF_RING

with our proposed study against four criteria: (i) the

ring buffer memory requirement (ii) the latency to copy

socket buffer.

4.1 Configuration

 Our experimental platform consists of two end

machines, which are connected by Ethernet. One is

packet generator which feeds 64Byte, 512Byte, 1500Byte

UDP/IP packets to the other machine. The other one is

installed PF_RING and improved PF_RING on which

we did our experiments. The configuration of the

receiver machine is in the following table.

Table 1. The Platform Configuration

4.2 The Ring Buffer Memory Requirement

Table 2. Ring Buffer Element Size Evaluation

 As the Table 2 shows, the change is very big after

pf_buff structure instead of sock structure, in the

original PF_RING socket, every ring buffer element

should be allocated 448 + 8 = 456 Bytes; in the

improved PF_RING socket, every ring buffer element is

just allocated 12 + 8 = 20 Bytes. The default ring

buffer length is 4096, therefore, our improved PF_RING

socket can save 4096 * (456 - 20) = 1785856 Bytes,

about 1.7 Mbytes every socket.

Table 3. Socket Buffer Evaluation

 In the Table 3, it shows memory is allocated

between PF_RING and improved PF_RING when socket

buffer (sk_buff structure) is copied into the ring buffer

제30회 한국정보처리학회 추계학술발표대회 논문집 제15권 제2호 (2008. 11)

1014

Packet Size PF_RING Improved
PF_RING

64 Bytes 9.9 s 9.8 s
512 Bytes 42.2 s 41.6 s
1500 Bytes 119.0 s 117.6 s

based on different packet sizes. Because of the

skb_clone() function, the improved PF_RING socket

doesn’t depend on the packet size. From this table, the

improved PF_RING can save more memory as the

packet size increasing.

4.3 The Latency

Table 4. The UDP Packet Processing Latency

 As the Table 4 shows, the packet processing

latency in improved PF_RING is shorter than in

original PF_RING. That’s because in original PF_RING,

the skb_copy() function has to call alloc_skb() function

to allocate the memory for the packet data; the

skb_clone() function in the improved PF_RING does

not.

5. Future works

 Although PF_RING is a very effective tool for

capturing packets on a Gbit network, it still leads to

packet loss because of the ring buffer overflow. In

future, we can solve the overflow problem to make no

packet be lost. We also can do a study of the features

that can be implemented with respect to packet

transmission in order to have a complete send/receive

architecture.

References

[1] The Tcpdump Group, tcpdump,

http://www.tcpdump.org/

[2] G. Combs, Ethereal, http://www.ethereal.com/

[3] M. Roesch “Snort-Lightweight Intrusion Detection

for Networks” Proceedings of Usenix Lisa ’99

Conference, http://www.snort.org/

[4] L. Deri “nProbe: an Open Source NetFlow Probe for

Gigabit Networks” Proceedings of Terena TNC 2003,

Zagreb, May 2003

[5] Amitava Biswas, Purnendu Sinha “A High

Performance Packet Capturing Support For Alarm

Management System” 17th IASTED International

conference on Parallel and Distributed Computing and

Systems, Phoenix, AZ, Nov 2005

[6] L. Deri “nCap: wire-speed packet capture and

transmission” Proceedings of the End-to-End

Monitoring Techniques and Services on 2005.

Workshop, May 15-April 30, 2005, pp. 47-55

[7] Lawrence Berkeley National Labs, libpcap, Network

Research Group, http://www.tcpdump.org/

[8] P. Wang, Z. Liu “Operating system support for high

performance networking” a survey.

http://www.cs.iupui.edu/~zliu/doc/os_survey.pdf

[9] Wen-Fong Wang, Jun-Yau Wang, Jin-Jie Li “Study

on Enhanced Strategies for TCP/IP Offload Engines”

Proceedings of the 2005 11th International Conference

on Parallel and Distributed Systems, July 2005, pp.

398-404

[10] J.H. Salim, R. Olsson “Beyond softnet” 5th Annual

Linux Showcase & Conference, Oakland, CA, 2001, pp.

165-172

[11] Luca Deri “Improving Passive Packet Capture:

Beyond Device Polling” SANE 2004, September 2004,

pp. 1-12

[12] Klaus Wehrle, Frank Pahlke, Hartmut Ritter, Daniel

Muller, Marc Bechler “The Linux Networking

Architecture” Pearson Education, 2005

제30회 한국정보처리학회 추계학술발표대회 논문집 제15권 제2호 (2008. 11)

1015

