
*

* * * * ** *
*

**
liliangbohost@gmail.com, {leeyeon, hermit, dwlee}@dblab.inha.ac.kr,

wnchung@hoseo.edu, hybae@inha.ac.kr

A Multi-Query Optimizing Method for Data Stream Similar
Queries on Sliding Window

Liangbo Li*, Yan Li*, Song-Sun Shin*, Dong-Wook Lee*, Weon-Il Chung**, Hae-Young Bae*
* Dept. of Computer Science and Information Engineering, Inha University

** Dept. of Information Security Engineering, Hoseo University

Abstract

In the presence of multiple continuous queries, multi-query optimizing is a new challenge to process multiple
stream data in real-time. So, in this paper, we proposed an approach to optimize multi-query of sliding window on
network traffic data streams and do some comparisons to traditional queries without optimizing. We also detail
some method of scheduling on different data streams, while different scheduling made different results. We test the
results on variety of multi-query processing schedule, and proofed the proposed method is effectively optimized
the data stream similar multi-queries.

* This research was supported by a grant(07KLSGC05) from Cutting-edge Urban Development - Korean Land Spatialization Research
Project funded by Ministry of Construction & Transportation of Korean government.

1. Introduction

With the development of technology and society, data
stream management system become more and more
significant along with multi-stream and multi-query.
Consider a network traffic management system, the input
stream may come from several different sources which
generate massive, rapid and real-time information, also there
may are many output streams which are very similar but only
less requests are different. In the presence of multiple
continuous queries, there is clearly an opportunity to share
common intermediate data and thus, increase the overall
processing speed of the system. It is also a challenge that
how to optimizing multi-query effectively.

Traditional databases store sets of relatively static records
with no pre-defined notion of time, unless timestamp
attributes are explicitly added. While this model adequately
represents commercial catalogues or repositories of personal
information, many current and emerging applications require
support for online analysis of rapidly changing data streams.
Limitations of traditional DBMS in supporting streaming
applications have been recognized, prompting research to
augment existing technologies and build new systems to
manage streaming data. A data stream is a sequence of real-

time, ordered, continuous items.
Data stream management system process on-line data such

as sensor measurements, IP packet headers, stock quotes, and
transaction logs. Network traffic monitoring is a compelling
application of data stream management system. For instance,
the Gigascope DSMS has been developed at AT&T Labs [2].
Applications of Gigascope include traffic analysis,
performance monitoring, troubleshooting, and detection of
network attacks. Usually, only a sliding window of recently
arrived data is available at a given time to avoid memory
overflow and to emphasize recent data be useful.

For some special aims, joining and optimizing some
multi-inputs using temporal join conditions over temporal
windows is important, and also joining and optimizing
persistent queries has the same importance, especially
persistent queries have similar semantics and be updated
periodically with some user-specified frequency or re-
execution interval. For example, many queries may compute
the same aggregate function on the same attribute, but over
different window length and different frequencies. Therefore,
multi-query optimization is particularly important.

This paper focuses some issues about optimizing multi-
query which have the similar requests and use the same
streams. We emphasize the methods of sliding window and

제30회 한국정보처리학회 추계학술발표대회 논문집 제15권 제2호 (2008. 11)

413

query scheduling on this paper. The remainders content of
this paper are organized as follows: In section 2, we
introduce some related work and propose an example to
analysis. Section 3 optimizes the queries by using sliding
window. Section 4 schedules the queries to improve the
performance efficiently. And section 6 concludes this paper.

2. Related Work

Paper named Optimization of Multiple Continuous Queries
over Streaming Satellite Data [5] describes a system that
realizes multiple query processing using two major
components: a query optimizer generates an execution plan
specific to the active queries, and a query executor then
rewrites this plan into a set of processing steps and executes
the plan. Here we do some else work related optimizing to
achieve the same aims.

As an example, let us consider the following requests, in
which the queries compute aggregates under some packet
stream. Representative examples include:

1. For every 1-mimute interval, report the number of
DNS requests in that interval (i.e., packets whose
destination port equals 80) that do not have a
matching response packet from the server in recent
30 seconds (i.e., one whose source port is 80, and
destination IP address and port are equal to the
source IP address and port of the request).

2. For every 1-nimute interval, report the number of
DNS requests in that interval that do not have a
matching response packet from the server in recent
50 seconds.

3. For every 1-minute interval, report the number of
DNS requests in that interval than do not have a
matching response packet from the serve in recent
70 seconds.

4. For every 3-minute interval, report the number of
DNS requests in that interval than do not have a
matching response packet from the serve in recent
100 seconds.

5. For every 3-minute interval, report the number of
DNS requests in that interval than do not have a
matching response packet from the serve in recent
150 seconds.

The above queries may be expressed as joins on the IP
address, port, and timestamp, followed by computation of
aggregate over temporal windows. In this paper, we do not
talk about the details of how to implement the query of
computing the number of DNS requests satisfied special
conditions, because there is paper [3] which has implemented
and optimized it. Instead we focus on the difference of these
examples and do some research we are interesting on it.

3. Query Evaluation and Optimization

For the previous examples, we define some constraints to
simplify the results and to analysis conveniently. Stream S
denotes an intermediate stream which joins the multi-stream

or sub-stream. Assume that the number of DNS requests
which satisfy the special conditions are computed by
summarize the attribute of S.

This definition is reasonable. Consider that in a network
traffic management system, when there are abundant client
streams connecting to the server, computing the number of
streams which did not get a matching response during the
time period is significant. To achieve this goal, it is necessary
to create some attributes to record this important information.

Here, an attribute called Rsp was created, while receiving
matching response denoted by 0 others by 1. According to
these constraints we can change the previous requests to the
following queries:

Q1 SELECT SUM(Rsp) FROM
S [WINDOW 30 sec SLIDE 1min]

Q2 SELECT SUM(Rsp) FROM
S [WINDOW 50 sec SLIDE 1min]

Q3 SELECT SUM(Rsp) FROM
S [WINDOW 70 sec SLIDE 1min]

Q4 SELECT SUM(Rsp) FROM
S [WINDOW 100 sec SLIDE 3 min]

Q5 SELECT SUM(Rsp) FROM
S [WINDOW 150 sec SLIDE 3 min]

The traditional method to deal with this problem is to
execute every SQL individual, while may not be very
effective. Suppose that Q1, Q2, and Q3 are all due for re-
evaluation. They can be answered using a sliding window
synopsis illustrated in Figure 1.

1 1 1 0 1 0 1 time

 Q1=SUM(1, 0,1)=2

Q2=SUM(Q1, 1, 0)=3

Q3=SUM(Q2, 1, 1)=5

10 seconds

(Figure 1: Shared evaluation of SUM aggregate)

The window is partitioned into non-overlapping intervals
of 10 seconds each and each interval stores only its sum
value. Every ten second, the synopsis is updated by deleting
the oldest interval and appending the sum value that has
arrived within the last ten second.

To obtain the sum value over a sliding window of 10
*n seconds, we take the sum of the attribute which val
ue is 1 of the first n intervals. As illustrated, the answe
rs of Q1 and Q2 may effectively be computed for free
during the computation Q3---we stop after reading the fi
rst three intervals and return an answer of Q1, then rea
d the next two intervals and return an answer of Q2, a
nd then read the remaining two intervals in order to ans
wer Q3.

In general, we assume the existence of a set of rules
specifying which queries may be efficiently executed
together if their re-execution times happen to coincide. In the
above example, all five queries may share computation,
provided that the synopsis from Figure 1 contains 15 ten-

제30회 한국정보처리학회 추계학술발표대회 논문집 제15권 제2호 (2008. 11)

414

second intervals to cover the longest window referenced by
Q3.

The goal of query optimization is to minimize the
processing (or response) time for all active queries in the
system. For the types of queries described in the previous
section, optimization if primarily concerned the goal:
minimizing the overlap time that every query should
consume to reduce the total processing time.

4. Query Scheduling Method

It is obvious that we can improve the query efficiency of
the previous example through scheduling the query
sequences. Consider a query sequence without any
scheduling. Suppose that Q1 to Q5 are partitioned into two
groups according to their frequencies: group G1 contains Q1
Q2 and Q3; group G2 contains Q4 and Q5. An execution
sequence of Q1 to Q5 is illustrated on a time axis in Figure 2.

G2

G1 G1 G1 G1 G1 G1 G1

G2 G2

(Figure 2: Query sequence without scheduling)

G2

G1 G1 G1 G1 G1 G1 G1

G2 G2G2 G2 G2 G2

(Figure 3: Query sequence with scheduling)

G2

G1 G1 G1 G1 G1 G1 G1

G2G2 G2

(Figure 4: Query sequence with scheduling)

We can compute the costs by computing the SUM
aggregation through the longest interval of the synopsis. For
example, to G1, there needs 6 SUM to calculate all of the
there queries’ results, and the cost is 6. By the similar
reasoning the cost of G2 is 14. In every 3 minute, queries in
G1 are executed separately twice, for a cost of 6*2=12, and
both of them are executed together once. Therefore, the total
cost of executing queries in G1 and G2 is 12+14=26 per
three minutes, or 8.67 per minute.

Other possibility is to synchronize the schedules of all
similar queries that may be executed together in order to take
advantage of overlapping computation. This means that all
five queries above would have to be scheduled every one
minute, as illustrated in Figure 3. Another solution is to
schedule G2 every two minutes, as illustrated in Figure 4.

Now suppose that G2 is executed whenever G1 is due for
a refresh. In this case, the cost per minute of the first
scheduling is 14, and the second is 14/2=7. Different
scheduling makes different results, which may be effective or
ineffective.

5. Performance Experiment

As discussed above, optimized queries are executed in the
order, Q1->Q2->Q3>Q4->Q5, the later can share the result
of current query. Figure 4 shows that the processing time
usage for the optimized queries is much shorter than non-
optimized query execution strategy. And with the increasing
number of the query requests, the non-optimized strategy
curve grows at a more fast speed, which can be summarized
from the gap between two curves, which is more and more
wide. All above proves the paper idea.

(Figure 5: Cooperation of time usage of multi-queries)

6. Conclusion

For large number of continuous queries, optimizations
over multiple queries have been shown to be an effective
method to increase the overall system performance. How
much savings can be expected depends primarily on the
relationships of the queries in the system.

This paper proposed an optimizing method for similar
multiple queries on data stream sliding window which could
used on network traffic streams. We think it is not a bad
choice for optimizing, and also there are many others’
methods which maybe better than here’s. We are expecting
the more effective and efficient technology that can make
query optimization greatly.

Reference

[1] Brian Babcock , Shivnath Babu , Mayur Datar , Rajeev
Motwani , Jennifer Widom, “Models and issues in data
stream systems”, Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, June 03-05, 2002, Madison, Wisconsin

[2] Chuck Cranor, Theodore Johnson, Oliver Spataschek,
Vladislav Shkapenyuk, “Gigascope: a stream database
for network applications”, Proceedings of the 2003 ACM
SIGMOD international conference on Management of
data, June 09-12, 2003, San Diego, California

[3] Lukasz Golab, Theodore Johnson, Nick Koudas, Divesh
Srivastava, David Toman Optimizing away joins on
data streams March 2008 SSPS '08: Proceedings of
the 2nd international workshop on Scalable stream
processing system

[4] Lukasz Golab, Kumar Gaurav Bijay, M. Tamer Özsu
Multi-Query Optimization of Sliding Window

제30회 한국정보처리학회 추계학술발표대회 논문집 제15권 제2호 (2008. 11)

415

Aggregates by Schedule Synchronization November
2006 CIKM '06: Proceedings of the 15th ACM
international conference on Information and knowledge
management

[5] Quinn Hart, Michael Gertz, “Optimization of multiple
continuous queries over streaming satellite data”,
November 2006 GIS '06 : Proceedings of the 14th
annual ACM international symposium on Advances in
geographic information systems

[6] Walid Aref, Moustafa Hammad, Ann Christine Catlin,
Ihab Ilyas, Thanaa Ghanem, Ahmed Elmagarmid, Mirette
Marzouk. “Video Query Processing in the VDBMS
Testbed for Video Database Research ” November
2003 MMDB '03: Proceedings of the 1st ACM
international workshop on Multimedia databases

[7] Brian Babcock , Shivnath Babu , Mayur Datar , Rajeev
Motwani , Dilys Thomas, “Operator scheduling in data
stream systems,” The VLDB Journal — The International
Journal on Very Large Data Bases, v.13 n.4, p.333-353,
December 2004

[8] Bin Liu, Amarnath Gupta, Ramesh Jain, “MedSMan: a
streaming data management system over live
multimedia,” Proceedings of the 13th annual ACM
international conference on Multimedia, November 06-11,
2005, Hilton, Singapore

[9] Gautam Das, Dimitrios Gunopulos, Nick Koudas, Nikos
Sarkas. “Ad-hoc Top-k Query Answering for Data
Streams ” September 2007 VLDB '07: Proceedings of
the 33rd international conference on Very large data
bases

제30회 한국정보처리학회 추계학술발표대회 논문집 제15권 제2호 (2008. 11)

416

