High T_c Pb-free (1-x)BaTiO₃-x(Bi_{1/2}Na_{1/2})TiO₃ 세라믹의 미세구조와 PTCR 특성

김 철민, 조 용수, 정 영훈, 이 영진, 이 미재, 백 종후, 이 우영, 김 대준 요업(세라믹)기술원, 연세대학교, (주)하이엘.

Microstructure and PTCR characteristic of high T_c lead-free (1-x)BaTiO₃-x(Bi_{1/2}Na_{1/2})TiO₃ characteristic

Chul-Min Kim, Yong-Soo Cho, Young-Hun Jeong, Mi-Jae Lee, Jong-Hoo Paik, Woo-Young Lee and Dae-Joon Kim Korea Institute of Ceramic ENG. & TECH, Yonsei University, and HIEL co.

Abstract: Microstructure and positive temperature coefficient of resistivity (PTCR) characteristics of 0.9BaTiO₃-0.1(Bi_{0.5}Na_{0.5})TiO₃ [BaBiNT] ceramics doped with Nb₂O₅ were investigated in order to develop the Pb-free high Curie temperature (T_c)(>160°C) PTC thermistor. The BaBiNT ceramics showed a tetragonal perovskite structure, irrespective of the added amount of Nb₂O₅. They also have a homogeneous microstructure. The resistivity of BaBiNT ceramics was gradually decreased by doping Nb₂O₅, which might be due to Nb⁺⁵ ions substituting for Ti⁺⁴ sites. The PTCR characteristics of BaBiNT ceramics appeared when the amount of doped Nb₂O₅ exceeded 0.0025mol%. Moreover, the abrupt grain growth was observed for the 0.03mol% Nb₂O₅ added BaBiNT ceramics. It showed an especially high T_c of approximately 172°C and good PTCR characteristics of a high ρ_{max}/ρ_{min} ratio (2.96×10³), a high resistivity temperature factor (11.4%°C) along with a relatively low resistivity (3.5 ×10⁴ Ω • cm).

Key Words: positive temperature coefficient of resistivity, Curie temperature, tetragonal perovskite structure