Enhanced Technique for Fiber Detection of ECC Sectional Image

ECC 화상 단면의 향상된 섬유 검출 기법

  • 이방연 (한국과학기술원 건설및환경공학과) ;
  • 김윤용 (충남대학교 토목공학과) ;
  • 김정수 (한국과학기술원 건설및환경공학과) ;
  • 이윤 (이화여자대학교 건축학과) ;
  • 김진근. (한국과학기술원 건설및환경공학과)
  • Published : 2008.04.24

Abstract

The fiber dispersion performance in fiber-reinforced cementitious composites is a crucial factor with respect to achieving desired mechanical performance. However, evaluation of the fiber dispersion performance in the composite PVA-ECC(Polyvinyl alcohol-Engineered Cementitious Composite) is extremely challenging because of the low contrast of PVA fibers with the cement-based matrix. In the present work, an enhanced fiber detection technique is developed and demonstrated. Using a fluorescence technique on the PVA-ECC, PVA fibers are observed as green dots in the cross-section of the composite. After capturing the fluorescence image with a Charged Couple Device(CCD) camera through a microscope. The fibers are more accurately detected by employing a series of process based on a categorization, watershed segmentation, and morphological reconstruction.

섬유복합재료의 우수한 인장 성능은 섬유가 매트릭스의 균열 면에서 가교작용을 함으로써 발현되기 때문에 섬유의 분산성이 복합재료의 성능에 결정적인 영향을 미치게 된다. 그러나 PVA(Polyvinyl alcohol) 섬유를 보강 섬유로 사용하는 섬유복합재료의 경우 PVA 섬유와 매트릭스 사이의 낮은 명암비와 PVA의 비전도성 특징으로 인하여 섬유의 위치 및 분포 특성을 정량적으로 평가히는 방법은 연구가 미흡한 실정이다. 이 연구에서는 PVA 섬유를 보강 섬유로 사용하는 섬유 복합재료의 섬유 분포 특성 등을 평가할 때 가장 중요한 과정인 섬유의 검출에 대하여 검출 성능을 향상 시킬 수 있는 알고리즘을 제시하였다. 제안한 알고리즘은 형광 현미경을 사용하여 얻은 섬유 이미지를 유형별로 분류하고, 분류된 분류된 섬유 이미지의 특성에 따라 분수령 알고리즘(watershed algorithm)과 형태학적 재구성(morphological reconstruction)을 이용하여 보다 정확히 섬유를 검출하는 과정으로 구성된다. 이 과정에서 섬유 이미지를 총 5가지 유형으로 분류하였으며, 인공신경회로망을 분류기로 구축하였다. 또한 구축한 분류기를 통해 분류된 5가지 섬유 이미지 유형 중에서 잘못 검출된 섬유이미지를 분수령 알고리즘과 형태학적 재구성을 통하여 섬유를 정확히 검출할 수 있는 기법을 제안하였다.

Keywords