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1. INTRODUCTION 
 

The rapid development of computational technology makes 
it possible to analyze the complex flow structure numerically. 
Though the most of mathematical theory for Euler and 
Navier-Stokes equations is developed in simple one 
dimensional space, it is readily extended to analyzing 
multi-dimensional flow and solving the flow pattern around 
intricate boundary. As a consequence the several researches 
have been carried out to handle a complex geometry. Among 
them, unstructured meshes technique is one of the most 
successful approaches due to its flexible tessellation. 

To resolve the complex flow accurately and efficiently, the 
robust high resolution scheme, without occurring spurious 
oscillations, is essential. However, most oscillation-free 
schemes are mainly based on the mathematical analysis of 
one-dimensional convection equation, and applied to systems 
of equations with the help of some linearization step. 
Especially, the TVD condition[1,2], which is a fundamental 
idea of restricting these oscillations, is inadequate on multiple 
dimensions maintaining high order accuracy[3]. Even though 
these schemes can be applicable on structured meshes by 
dimensional splitting manner and it may work successfully in 
many cases, it is often insufficient or almost impossible to 
control oscillations near shock discontinuity in 
multi-dimensional flow. Moreover, adapting these schemes 
directly on unstructured meshes seems to be almost impossible. 
In this respect, exploring an oscillation control method for 
multi-dimensional applications is obviously needed, especially 
on unstructured meshes due to its geometric complexity. 

In order to find out a suitable criterion for oscillation 
control in multiple dimensions, the one-dimensional 
monotonic condition was extended to multi-dimensional flows 
and our group successfully formulated the multi-dimensional 
limiting process (MLP), which showed enhanced accuracy and 
convergence for numerous inviscid and viscous computations 
on structured meshes[4,5]. Thus, it is expected that this 
strategy can be applied on unstructured meshes with some 
modifications. 

The aim of the present paper is devising the new limiting 
process on unstructured meshes extending the MLP on 
structured meshes. At first, the MUSCL-type framework on 
unstructured meshes is briefly mentioned on section 2. Then, 
the MLP on structured meshes is summarized and unstructured 
version of MLP is introduced on section 3. In Section 4, 
numerical test cases are presented to verify the performance of 
present method. Finally, conclusion is given in Section 5. 

2. FINITE VOLUME METHODS ON 
UNSTURCTURED MESHES 

 
2.1 Framework of MUSCL-type approach 

Consider the multi-dimensional hyperbolic conservation 
laws, 
 

( ) 0QFQ =+ xt , (1) 
 

where Q  is the state variable vector and F  is the flux 
function vector.  

In order to resolve discontinuities which occur on the 
solution of a hyperbolic system, finite volume method is 
appropriate. There are two approaches of finite volume 
method on unstructured meshes: one is cell-centered approach 
whose control volume is a triangle generated by mesh, the 
other is cell-vertex approach whose control volume is from 
median dual. It is controversial that which approach is better 
for accurate and efficient calculation. Regarding that one of 
motivation of this research is extension of MLP on structured 
meshes, the cell-centered approach, which is more natural 
extension of structured meshes, is applied. With the numerical 
flux function, the semi-discretized form of Eq. (1) for each 
component on the control volume jT  is written as follows. 
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where q  denotes the component of the cell-averaged value, 

jkq  is the cell interface state value from the cell jT  to the 

cell kT  and jT  is the area of the cell jT . jke  denotes 

the edge between the cell jT  and the cell kT  and jke  is 

the length of this edge. ( )RL qqh ,  is the numerical flux 
function. 

On Godunov methods, qL and qR are cell-averaged values, 
which assume piecewise constant distribution, but it only 
guarantees first order spatial accuracy. In order to obtain 
higher order accurate solution on unstructured meshes, the 
MUSCL-type framework is introduced. This extends the one 
dimensional slope limiter, so the value in a cell is assumed to 
be linearly distributed. For each component, the distribution 
on the cell is reconstructed as follows.  
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( ) r⋅∇+= jjj qqyxq φ, , (3) 
 
where jq∇  is the gradient of the component on the cell jT  
and φ  is a slope limiter. The cell interface values are 
calculated by this formula and the second order accurate 
solution can be obtained. 

There are various schemes based on MUSCL-type approach, 
but the key differences are the gradient calculation and the 
limiter. The following subsection explains the first part of this 
framework, linear reconstruction, and then new limiting 
process is dealt on next section. 
 
2.2 Methods of linear reconstruction 

In the one dimensional MUSCL approach, the slope is 
easily calculated by simple difference formulas. However, due 
to the geometric complexity of grid system, it is impossible to 
apply above approaches, thus the linear reconstruction 
approach is required using neighboring cell values. 

The easiest method of linear reconstruction is the simple 
gradients operator using three cell-averaged values among the 
cell and its neighborhood[6,7]. Though this method needs 
little computational cost, it is not clear to choose the 
appropriate cell-averaged values for operation among the 
neighborhood (See Fig. 1). Moreover the operation is not 
robust, especially on a stretched triangular element and it also 
does not give the accurate gradient. As a consequence, the 
more accurate and robust methods are required. 

One of such method is the least-square reconstruction, 
which gives the accurate fitting of the gradient using the value 
of the cell and those of its neighborhood. For the simple 
triangular mesh, the gradient is estimated by applying Eq. (3) 
to the neighborhood of the given cell. 
 

[ ] fLL =∇ jq21  , (4) 
 
where [ ]TOCOBOA xxx ΔΔΔ=     1L , [ ]TOCOBOA yyy ΔΔΔ=     2L  

and [ ]TOAOAOA qqqqqq −−−=     f . The above matrix is 
over-determined system so least square fitting technique gives 
appropriates estimation value of the gradient. 
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where jiijl LL ⋅= . Although this method requires the 
expensive computational costs, it is flexible to the shape of 
mesh and easy to extend quadratic or higher order schemes by 
estimating higher order derivatives. Due to these advantages, 
the gradient is calculated by least-square reconstruction in this 
research. 
 

3. MULTI-DIMENSIONAL LIMITING PROCESS 
ON UNSTRUCTURED MESHES 

 
3.1 Review of MLP on structured meshes 

The Godunov approach is usually handled by decoupling 
interpolation stage and evolution stage. Without modifying the 
evolution stage, where the local Riemann problem is solved, 
the piecewise linear or quadratic distribution is applied on 
interpolation stage to obtain high resolution. One of the most 
successful ways of this is the MUSCL approach, referred as a 
second order upwind schemes by applying the piecewise 
linear distribution. 

In order to control oscillatory behavior on one dimension, 
MUSCL approach with TVD limiter is commonly used. With 
the symmetric TVD limiter, the cell interface values can be 
obtained by following simple formula. 
 

( ) 2121 5.0 −+ Δ+= iLi
L
i qrqq φ , ( ) 2321 5.0 ++ Δ−= iRi

R
i qrqq φ  (6) 

 
where Lr  and Rr  are the ratios of the slope by neighboring 
cells, which are defined by iii qqq −=Δ ++ 121 , 

2121 −+ ΔΔ= iiL qqr  and 2321 ++ ΔΔ= iiR qqr . The limiter 
( )rφ  satisfies the symmetric condition of ( ) ( )rrr 1φφ = . 
One-dimensional limiting condition using the TVD 

constraint yields the following TVD zone[2] is written as 
follows.  
 

( ) ( )rr 2,2min0 ≤≤φ , (7) 
 
With this condition, the one dimensional monotonic 
distribution can be expressed. 
 

11 +− ≤≤ iii qqq , (8) 
 

Though the TVD condition is quite effective to restrict the 
spurious on oscillations one dimensional space, it does not 
guarantee monotonic solution on multi-dimensional space. In 
order to prevent these oscillations, there are several attempts 
to make multi-dimensional monotonic condition. Among them, 
MLP is one of the successful ways to regulate these 
oscillations across a discontinuity in multiple dimensions. 
Extending from the monotonic distribution of TVD condition 
Eq. (8), the MLP condition restricts the value at the cell vertex, 
where the each directional variation is multi-dimensionally 
summed. 
 

minmin
neighborvertexneighbor qqq ≤≤ , (9) 

 
This condition can be readily implemented within 

TVD-MUSCL framework by adopting variable limiting region. 
Thus, limiting region of MLP condition can be written as 
follows. 
 

( ) ( )rr ααφ ,min0 ≤≤ , (10) 
 
where α is the multi-dimensional restriction coefficient 
which determines the baseline limiting region. From the MLP 
condition, the value of α is obtained by following formula. 
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Fig. 1 The neighborhood of the cell OT . 
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where jijix qqr ,21,21 −+ ΔΔ= and x
jki

y
jkixy qqr ,2,21 ++ ΔΔ=  

with 12 ,1 ±=kk . While the TVD region is fixed, the MLP 
limiting region is varying according to the multi-dimensional 
distribution of property (See Fig. 2). 
 
3.2 MLP condition on unstructured meshes 

Referring the successful result of MLP on structured 
meshes, it is expected that MLP can easily extended on 
unstructured meshes. However, there are some difficulties for 
the direct extension of MLP to unstructured meshes. MLP on 
structured meshes depend the TVD-MUSCL framework, 
which limits the cell interface values by dimensional splitting 
manner, and MLP condition, which is essential constraint to 
remove spurious oscillation by limiting cell vertex values. 
Because there is no unique base direction for each triangular 
cell on unstructured meshes, it is unreasonable to obtain 
directional variations and to limit these variations using cell 
interface values. In addition, the TVD condition does not 
guarantee the monotonicity on multiple dimensions and 
degrade accuracy to the order of one[3]. To cope with these 
multi-dimensional natures of unstructured grids, the 
interpolation stage of Godunov approach should be modified, 
such as MUSCL-type framework on unstructured meshes. 
Moreover, the other criterion for the monotonicity on multiple 
dimensions is required to circumvent the limitation of TVD 
condition. 

With the notion of MLP condition of structured grids, the 
maximum and minimum values at the boundary of a cell 
should be investigated to prevent spurious oscillations. On 
MUSCL-type framework of unstructured grids, these are 
occurred on the vertex of the cell, thus the value at each vertex 
should be limited by proper method. Comparing to other 
limiting approaches, MLP condition restricts the value at the 
vertex, considering the distribution around the vertex itself. 
Thus, it is reasonable to applying MLP condition Eq. (9) to 
MUSCL-type framework. Thus, the multi-dimensional slope 
limiter is bounded by this condition. 
 

vertex

neighbor

vertex

neighbor

q
qq

q
qq

rr ⋅∇

−
≤≤

⋅∇

− maxmin

φ , (12) 

 
The effectiveness of MLP condition is supported by the 

maximum principle, which is a complementary condition 
ensuring the monotonicity on multiple dimensions. It is 
summarized by following theorem.  
 

Theorem1. The fully discrete finite volume scheme of 
hyperbolic conservation laws with Lipschitz continuous flux 
function and linear reconstruction exhibit the maximum 
principle, 
 

UB
jj

LB
j qqq ≤≤ , (13) 

 
if linear reconstruction satisfies the MLP condition under 

proper CFL restriction. The LB
jq  and UB

jq  are the lower 

and upper bound of cell-averaged values among the 
neighborhood of the cell jT , which shares at least a common 
point on this cell. (See Fig. 3) 

Proof) Let’s denotes jvi
q ,ˆ  as the estimated value at the 

vertex iv  on the cell jT . From the MLP condition, a value 
at the vertex satisfies following formula. 
 

max
,

min ˆˆˆ
iii vjvv qqq ≤≤ , (14) 

 
where minˆ

ivq  and maxˆ
ivq  are the minimum and maximum 

values of solution cell averages among the cells which share 
the vertex iv . With this definition, the lower and upper bound 

values of the cell jT  can be rewritten as follows. 
 

( )minˆmin
i

ji
vTv

LB
j qq

∈
= , ( )maxˆmax

i
ji

vTv

UB
j qq

∈
= . (15) 

 
Due to the linear reconstruction, the cell interface values are 
the linear combination of the values at the vertex. 
 

( ) kvjvjk qqq ,, 21
ˆ1ˆ ξξ −+= , 10 ≤≤ ξ  (16) 

( ) kvkvkj qqq ,, 21
ˆ1ˆ ζζ −+= , 10 ≤≤ ζ  (17) 

 
With Eqs. (14)~(17), the interface values are bounded as 
follows. 
 

UB
jkjjk

LB
j qqqq ≤≤ , , (18) 

 

Fig. 2 Baseline MLP region. 
 

Fig. 3 The neighborhood of the cell jT . 
(Shaded region: the group of cells sharing vertex A) 
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Apply this inequality to Eq. (2), thus the following relation 
can be obtained. 
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where jL  is the diameter of the cell jT . 
With the similar approach, we also obtain another inequality. 
 

( ) ( )jk
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jjkk

j
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q
h

T

L
t

q
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If we apply simple explicit time integration scheme on Eq. (2) 
under following CFL condition, 
 

3
1sup ≤⎟

⎟
⎠

⎞
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⎜
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Δ

dq
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T
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t
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j
, (21) 

 
then two inequality, Eqs. (19)~ (20), can be written as follows. 
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With the similar algebraic manipulation of the proof of Liu[8], 
it is shown that the cell-averaged value of n + 1 step is 
bounded within upper and lower bound of solution cell 
average values. 
 

nUB
j

n
j

nLB
j qqq ,1, ≤≤ + . (23) 

 
Thus, the MLP satisfies the maximum principle. 

While other limiters on unstructured grids, such as Barth’s 
limiter, LCD and MLG limiter[6, 7, 10], satisfy the maximum 
principle, the difference can be shown by comparing the 
stencil of maximum principle (See Fig. 4). Because the 
allowable distribution of the cell for these limiters depends on 
Spekreijse’s monotonic condition[9], the stencil of these 
limiters includes cell-averaged values only sharing edge. Thus 
they have a drawback not to capture multi-dimensional 
discontinuity accurately. However, MLP condition fully 
exploits the cell averaged values sharing vertexes, as well as 
edges, so it is possible to detect on discontinuity, especially 
near the vertex points. 
 
 

3.2 MLP condition on unstructured meshes 
Implementing MLP condition on the MUSCL-like 

frameworks, the general formulation of the MLP-u type slope 
limiter can be written as follows. 
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where 

ii vjjvi qqqr r⋅∇−= )ˆ( maxmin/
,

maxmin/ . The function Φ , 
called the local limiting function, determines the additional 
behaviors of limiter by adjusting the magnitude of the slope. 
For the monotonicity, the value of this function should be less 
than one. 

The immediate form of local limiting function Φ  is the 
upper bound of limiting region. This limiter denotes MLP-u1, 
which can be written as follows. 
 

( ) ( )rr ,1min=Φ  (25) 
 

However, this choice consists of non-differentiable form 
such as min or max function, which is potential to hamper the 
convergence of steady state problem. Adapting the 
Venkatakrishnan’s[11] modification for Barth’s limiter[10] we 
also propose MLP-Venkatakrishinan limiter for steady state 
problem as follow. 
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 (26) 

 
where ( )32 xKΔ=ε . The role of value ε  is to distinguish 
the nearly continuous region and discontinuous region, which 
also prevent clipping problem by similar approach of TVB 
limiter. 
 

4. NUMERICAL RESULTS 
 
4.1 Shock tube problem 

This test is performed to examine the capability of the 
scheme to resolve discontinuous wave on unstructured grids. 
The computational domain is[0,1]x[0,0.1] with a triangulation 
of 101 vertices in the x-direction and 11 vertices in the 
y-direction. Riemann type initial conditions are considered.  
 

( ) ( )
( )⎩
⎨
⎧

<
≥

=
0 if,,,
0 if,,,

,,,
xpvu
xpvu

pvu
RRRR

LLLL

ρ
ρ

ρ  (27) 

 
Lax Problem: 
( ) ( )528.3,0,698.0,445.0,,, =LLLL pvuρ , 
( ) ( )571.0,0,0,5.0,,, =RRRR pvuρ  (28) 

 
The y-directional velocity v is zero, and the interface is 

located at x = 0.5. Numerical flux is calculated by RoeM 
scheme[12] 

Fig. 5 shows the density distribution of Lax problem at 
12.0=t . Comparing to Barth’s limiter, MLP-u1 gives much 

better resolution, except yielding little overshoot near contact 
discontinuity. The characteristic version of MLP-u1 removes 
these phenomena.  
 

Fig. 4  The comparison stencil for the maximum principle:
(a) Maximum principle region by M. E. Hubbard,
(b) Barth’s limiter and (c) MLP-u. 
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4.2 Double mach reflection problem 

This problem is a very popular test case for high-resolution 
schemes[13]. The whole computational domain is[0, 4]x[0, 1]. 
The reflective wall located at the bottom of computational 
domain beginning at 61=x . At first, a right-moving shock 

10=M  is positioned at ( )0,61 == yx  making 60 ° angle 
with respect to the x-axis. Lax-Friedrichs scheme is used as a 
numerical flux and the computation was carried out until 

2.0=t  
Fig. 6 shows the comparison of density contours using 

triangular grids whose size h is 4801 . Both limiters give 
monotone solutions, but MLP-u1 limiter gives a much 
enhanced resolution for shock discontinuity and the 
complicated flow structure below the Mach stem than Barth’s 
limiter. 
 
4.3 Isentropic vortex problem 

Since vortex flow is a purely multi-dimensional 
phenomenon, it is a good test case to examine the accuracy of 
a numerical scheme in multiple dimensions flow without 
shock waves and turbulence. Since the flowfield is inviscid, 
the exact solution is just a passive advection of the initial 
vortex with mean flow. The mean flow, which is considered as 
a free stream, is 1=∞ρ , 1=∞p  and ( ) ( )0,0, =∞∞ vu . The 
perturbation values for the isentropic vortex are given by 
 

( ) ( )( )xye r ,
2

vu,
215.0 −= −

π
εδδ , 

( ) 21
2

2

8
1 reT −−

−=
γπ

εγδ , (29) 

 
The strength of vortex is 5=ε . Here, ( ) ( )00 ,, yyxxyx −−= , 
where ( )00 , yx  are the coordinate of the center of initial 

vortex, and 222 yxr += . From δρρρ += ∞ , uuu δ+= ∞ , 
vvv δ+= ∞  , TTT δ+= ∞  and isentropic relation, the 

conservative variable of a state is given by  
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1

2
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8
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−
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⎥
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ερδρρ , (31) 
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2
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π
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γρ=p , (33) 

( ) ( )22

2
1

1
vupet ++

−
=

γρ
. (34) 

 
The computational domain is −5 ≤ x ≤ 5 and       

−5 ≤ y ≤ 5 and periodic boundary condition is applied. 
The triangular mesh is created by dividing uniform square 
elements along the diagonal. Roe’s FDS[14] is applied as a 
numerical flux. 

Fig. 7 shows the density contours of Barth’s limiter and 
proposed limiter. Due to the large dissipation of Barth’s 
limiter, the contour of vortex is smeared and distorted. On the 
other hand, MLP-u1 limiter can keep vortex shape.  

Fig. 8 shows the comparison of density distributions at the 
vortex center line. Similar to a previous figure, it clearly 
shows the low-dissipative characteristic of proposed limiting 
strategy. 

Table 1 presents the analysis of the order of accuracy at 
time t = 1. Comparing the result of Barth’s limiter, MLP-u1 
limiter maintains higher order accuracy. 
 
4.4 Double shock reflection 

In order to investigate the convergence characteristic of 
steady state flow, this test is considered. The flow of Mach 2 
blows to the pipe of which deflection angle is 15 degree. The 
mesh is consisted with 6194 triangular elements.  
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Fig. 5 The comparison density distributions of Lax problem at
the centerline. 

 

Fig. 6 Density contours at blown-up region around the double
Mach stems. (Top: Barth’s limiter, Bottom: MLP-u1) 
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Fig. 7 Density contours of evolution of vortex at 50=t . 

(Top: Barth’s limiter, Bottom: MLP-u1) 
 

 
Table 1 Grid refinement test for the evolution of isentropic 

vortex at 0.2=t  
  ∞L  Order 1L  Order

Barth 

10x10x2 2.08E-1 - 1.13E-2 - 
20x20x2 1.19E-1 0.81 4.73E-3 1.26 
40x40x2 5.98E-2 1.00 2.19E-3 1.13 
80x80x2 3.20E-2 0.90 1.07E-1 1.01 

MLP-
u1 

10x10x2 1.72E-1 - 9.59E-3 - 
20x20x2 4.16E-2 2.05 2.05E-3 1.94 
40x40x2 8..62E-3 2.27 5.87E-4 2.09 
80x80x2 1.58E-3 2.44 1.29E-4 2.19 

MLP- 
Venkata
krishnan 

10x10x2 1.87E-1 - 1.04E-2 - 
20x20x2 5.78E-2 1.69 2.81E-3 1.89 
40x40x2 1.19E-2 2.28 6.59E-4 2.09 
80x80x2 2.04E-3 2.55 1.43E-4 2.20 

Without 
Limiter 

10x10x2 1.48E-1 - 9.77E-3 - 
20x20x2 3.97E-2 1.90 2.50E-3 1.96 
40x40x2 7.73E-3 2.36 5.62E-4 2.16 
80x80x2 1.54E-3 2.32 1.24E-4 2.19 

 
Fig. 8 Density distributions of the evolution of vortex along 

the center line. (Top: Barth’s limiter, Bottom: MLP-u1) 
 

 
Fig. 9 Comparison of pressure contours for double shock 

reflection. (Top: Venkatakrishnan limiter, Bottom: 
MLP-Venkatakrishnan) 
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Fig. 10 Error history of double shock reflection. 

 
Fig. 9 is the comparison of pressure distributions of 

Venkatakrishnan limiter and MLP-Venkatakrishnan limiter. 
The value K of ε  set to 0.1. Though they show little 
difference of pressure contour, both limiters give a monotone 
solution.  

Fig. 10 shows convergence history of each limiter. While 
the limiters that contain non-differentiable function, such as 
min or max, fails to converge to machine level order, the result 
of Venkatakrishnan limiter and MLP-Venkatakrishnan limiter 
shows good convergence characteristics. 
 
4.5 Viscous shock tube problem 

This test case shows the complex viscous flow structure 
involving the interaction with shock wave, boundary layer and 
vortex. As diaphragm is broken, the boundary layer grows by 
viscosity at the horizontal wall. After the shock wave reaches 
the vertical wall, this wave interacts with boundary layer, 
which makes complex flow with λ-shape shock and vortices. 

For the two dimensional case, Daru and Tenaud proposed 
this configuration[15]. The size of shock tube is 1 length and 1 
height and diaphragm is located at x = 0.5. The initial state of 
both chambers is given as follows.  
 

( ) ( )γρ 120.0,0,120,,, =LLLL pvu , 
( ) ( )γρ 2.1,0,0,2.1,,, =RRRR pvu  (35) 

 
The Reynolds number is 200 and Prandtl number is 0.13. 

With AUSMPW+ inviscid flux[16], the viscous flux is 
calculated by Frink’s approach[17]. TVD Runge-kutta 3rd 
order time integration method is used with CFL = 0.5.  

On Fig. 11, the density contours are compared at t = 1. The 
result of MLP-u1 limiter on coarse grid is similar to that of 
Barth’s limiter on fine grid, which has about four times more 
triangular elements. Also, the vortexes in the boundary layer 
of Barth’s limiter lose it shape due to the excessive diffusion. 
On the other hand, the vortexes of MLP-u1 limiter is captured 
maintaining significantly better accuracy. 

Fig. 12 shows the density distributions on the bottom wall. 
Investigating around the primary vortex region, it is shown the 
diffusive behavior of Barth’s limiter.  

Table 2 is the comparison of the primary vortex size. 
Comparing to the result of structured grid[4], the result of 
MLP-u1 limiter on fine grid is almost the same with the 
converged value of MLP on structured grid. The size of 
Barth’s limiter on fine grid is even smaller than that of 

MLP-u1 limiter on coarse grid. From the above comparison, 
the MLP-u limiter resolves the complex viscous flow pattern 
accurately. 
 
 
Table 2 Size of primary vortex for viscous shock tube problem. 

 Barth’s limiter MLP-u1 
2501=h 0.124 0.147 
3501=h 0.135 0.161 
5001=h 0.142 0.168 
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Fig. 11 Comparison of density contours for viscous shock
tube. problem (Top: Barth’s limiter, Bottom: MLP-u1)
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5. CONCLUSIONS 
 

With the previous successful results of MLP on structured 
grids, the new limiting process, called MLP-u, is proposed on 
unstructured grids. The key idea of MLP-u is the extension of 
MLP condition, which is the essential part of ensuring 
monotonicity on structured meshes. With this condition, the 
values at the vertex, where an extreme of the linearly 
distributed cell is occurred, are properly restricted based on 
the distribution of neighboring cells. The satisfaction of 
maximum principle also guarantees the monotonicity of the 
solution. On the MUSCL-type framework, the MLP-u type 
slope limiters are proposed. 

The various numerical tests clearly show the desirable 
characteristics of proposed limiting strategy. Maintaining the 
multi-dimensional monotonicity and robustness, the accuracy 
is significantly improved on capturing the complex flow 
structured. 
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