A Technique Security Analysis Using Cryptography of RFID Device

A Technique Security Analysis Using Cryptography of RFID Device

Stephen C. Bono, Matthew Green , Adam Stubblefield
Department of Computer Science, Johns Hopkins University, USA

Abstract

We describe our success in defeating the security of

an RFID device known as a Digital Signature
Transponder(DST). Manufactured by Texas Instruments,

DST (and variant) devices help secure millions of

SpeedPassTM payment transponders and automobile
ignition keys.

1. Introduction

Radio-Frequency IDentification (RFID) is a general
term for small, wireless devices that emit unique
identifiers upon interrogation by RFID recaders.
Ambitious deployment plans by Wal-mart and other
large organizations over the next couple of years have
prompted intense commercial and scientific interest in
RFID [23]. The form of RFID device likely to see the
broadest use, particularly in commercial supply chains,
is known as an EPC (Electronic Product Code) tag.
This is the RFID device specified in the Class |
Generation 2 standard recently ratified by a major
industry consortium known as EPCglobal [9, 19]. EPC
tags are designed to be very inexpensive — and may
soon be available for as little as five cents/unit in large
quantities according to some projections {21, 20]. They
are sometimes viewed in effect as wireless barcodes:
They aim to provide identification, but not digital
authentication. Indeed, a basic EPC tag lacks sufficient
circuitry to implement even symmetrickey cryptographic
primitives [21].

The term RFID, however, denotes not just EPC tags,
but a spectrum of wireless devices of varying
capabilities. More sophisticated and expensive RFID
devices can offer cryptographic functionality and
therefore support authentication protocols. One of the
most popular of such devices is known as a Digital
Signature Transponder (DST). Manufactured by Texas
Instruments, DSTs are deployed in several applications
that are notable for wide-scale deployment and the high
costs (financial and otherwise) of a large-scale security
breach. These include:

In this paper, we describe our success in attacking
the Texas Instruments DST system. We are able to
recover the secret cryptographic key from a target DST
device after harvesting just two challenge-response
pairs. For arbitrary challenge-response pairs, we are
able to recover a key in under an hour using an array of
sixteen FPGAs. When the challenge-response pairs
derive from pre-determined challenges, it.e., in a
chosen-plaintext attack, a time-space trade-off is
possible, reducing the cracking time to a matter of
minutes. The full details of this chosen-response attack
will appear in a future version of this work. Once we
have rccovered a key, we arc able to use an
inexpensive, commodity RF device to “clone” the
target DST, that is, to simulate its radio output so as to
convince a reader.

1.1 Related work

The pre-eminent historical example of black-box
reverse-engineering of a cipher was the reconstruction
of the Japanese Foreign Office cipher Purple during the
Second World War. Under the leadership of William F.
Friedman, the United States Signals Intelligence
Service performed the feat of duplicating the Purple
enciphering machine without ever having physical
access to onc [13].

There are a number of well known contemporary
cxamples of the reverse-engineering of proprietary
cryptographic algorithms. For example, the RC4 cipher,
formerly protected as a trade secret by RSA Data
Security Inc., was publicly leaked in 1994 as the result
of what was believed to be reverse-engineering of
software implementations [4]. The AS/1 and A5/2
ciphers, employed for confidentiality in GSM phones,
were likewise publicly disclosed as a result of reverse
engineering. The exact method of reverse-engineering
has not been disclosed, although the source was
purportedly “an actual GSM phone” [6].

There are also numerous published fault-induction
and side-channel attacks against hardware devices, e.g.,

- 161 -

International Conference on Information Convergence

[5]. These are related to our work, but involve rather
different techniques, and generally aim to recover a key,
rather than a cipher design.

In fact, we are unaware of any published black-box
reverse-engineering of a contemporary cipher, whether
the original source be a software or a hardware
implementation. Having no literature to refer to, we
developed techniques for our cffort in an ad hoc
manner. While our techniques are not easily
generalizable, we hope that they will nonetheless aid
future researchers at a conceptual level in similar
endeavors.

In contrast, the key-recovery techniques we
employed are well known. Our parallel FPGA key-
recovery system operates on much the same principle,
for example, as the well publicized Deep Crack
machine that employed hardware-based key-space
searching to recover DES keys [10, 17].

As mentioned above, our system for key recovery in
software using chosen-challenge pairs exploits the
timespace tradeoff developed by Hellman. We also
employ the “distinguished point” enhancement of
Rivest. We have drawn on previous work by
Quisquater et al. [18], who created a Hellman-based
system for recovering keys from a variant of DES
employing 40-bit keys.

We note that we have chosen in this document to
reveal information about the DST cipher sufficient to
elucidate our reverse-engineering and analysis
techniques. We omit details about that would permit
direct reconstruction of the cipher. Our goal is to offer
our fullest possible contribution to the scientific
community, but at the same time to avoid fomenting
abuse of our results. Once the industry has had time to
take adequate measures, we intend to divulge full
cipher details in the interest of stimulating cryptanalytic
research by the scientific community.

In general, the problem of achieving authentication
in RFID devices — with and without full-blown
cryptography — has seen a recent burgeoning in the
data-security literature. An up-to-date bibliography
may be found at [3].

2 . Practical Significance of Our Results

Our attack on the DST cipher by no means implies
wholesale dismantling of the security of the SpeedPass
network, mnor easy theft of automobiles. The
cryptographic challenge-response protocols of DST
devices constitute only one of several layers of security
in these systems. ExxonMobil informed us that the
SpeedPass network has on-line fraud detection
mechanisms loosely analogous to those employed for

traditional credit-card transaction processing. Thus an
attacker that simulates a target DST cannot do so with
complete impunity; suspicious usage patterns may
result in flagging and disabling of a SpeedPass device
in the network. The most serious system-wide threat
lics in the ability of an attacker to target and simulate
multiple DSTs, as suggested in our example scenarios
below.

In some sense, the threat to automobile immobilizers
is more serious, as: (1) An automobile is effectively an
off-line security system and (2) A single successful
attack on an automobile immobilizer can result in full
compromise of the vehicle. While compromise of a
DST does not immediately permit theft of an
automobile, it renders an automobile with an
immobilizer as vulnerable to theft as an automobile
without one. Such a rollback in automobile security has
serious implications. As noted above, significant
declines in automobile theft rates — up to 90% — have
been attributed to immobilizers during their initial
introduction. Even now, automobile theft is an
enormous criminal industry, with 1,260,471 automobile
thefts registered by the FBI in 2003 in the United
States alone, for a total estimated loss of $8.6 billion
[16].

Extracting the key from a DST device requires the
harvesting of two challenge-response pairs. As a result,
there are certain physical obstacles to successful attack.
Nonetheless, bypassing the cryptographic protections
in DST devices results in considerably elevated real-
world threats. In this section we elaborate on the
context and implications of our work.

2.1 Effective attack range

There are effectively two different methods by which
an attacker may harvest signals from a target DST, and
two different corresponding physical ranges.

The first mode of attack is active scanning: The
attacker brings her own reader within scanning range of
the target DST. DSTs of the type found in SpeedPass
and automobile ignition keys are designed for short
range scanning — on the order of a few centimeters. In
practice, however, a longer range is achievable. In
preliminary experiments, we have achieved an effective
range of several inches for a DST on a keyring in the
pocket of a simulated victim. A DST may respond to as
many as eight queries per second. Thus, it is possible to
perform the two scans requisite for our simulation
attacks in as little as one-quarter of a second. At the
limit of the range achiecvable by a given antenna,
however, scanning becomes somewhat unreliable, and

- 162 -

A Technique Security Analysis Using Cryptography of RFID Device

can require more time.

From the standpoint of an attacker, active scanning
has the advantage of permitting a chosen-challenge
attack. Hence this type of attack permits the use of
precomputed Hellman tables as touched on above. In
principle, therefore, it would be possible for an attacker
with appropriate engineering expertise to construct a
completely sclf-contained cloning device about the size
of an Apple iPod. When passed in close proximity to a
target DST, this device would harvest two chosen-
challenge transcripts, perform a lookup in an on-board
set of precomputed Hellman tables in the course of a
minute or so, and then simulate the target DST. We
estimate that the cost of constructing such a device
would be on the order of several hundred dollars.

The second mode of attack is passive eavesdropping.

Limitations on the cffective range of active scanning
stem from the requirement that a reader antenna furnish
power to the target DST. An attacker might instead
eavesdrop on the communication between a legitimate
reader and a target DST during a valid authentication
session. In this case, the attacker need not furnish
power to the DST. The effective eavesdropping range
then depends solely on the ability to intercept the signal
emitted by the DST.

We have not performed any experiments to
determine the range at which this attack might be
mounted. It is worth noting purported U.S. Department
of Homeland Security reports, however, of successful
eavesdropping of this kind on 13.56 Mhz tags at a
distance of some tens of feet [24]. The DST, as we
explain below, operates at 134 kHz. Signals at this
considerably lower frequency penetrate obstacles more
effectively, which may facilitate eavesdropping. On the
other hand, larger antennas are required for effective
signal interception.

Only careful experimentation will permit accurate
assessment of the degree of these two threats. Our
cursory experiments, however, suggest that the threats
are well within the realm of practical execution.

2.2 Example attack scenarios

For further clarification of the implications of our
work, we offer a few examples of possible DST
exploits. We let Eve represent the malefactor in these
scenarios.

Example 1 (Auto theft via eavesdropping) Eve runs an
automobile theft ring. She owns a van with
eavesdropping equipment. She parks this near a target
automobile so as to eavesdrop on ignition-key-to-
reader transmissions. 1 After observing two turns of the
ignition key, she is able to extract the cryptographic

key of the DST at her leisure using an FPGA. She
returns subsequently to steal the target automobile. To
enter the vehicle, she picks or jimmies the door lock.
She then hot-wires the ignition and deactivates the
immobilizer by simulating the DST of the real key.

Example 2 (Auto theft via active attack) Eve runs an
automobile theft ring. She suborns a wvalet at an
expensive restaurant to scan the immobilizer keys of
patrons while parking their cars, and to note their
registration numbers. Based on these registration
numbers, Eve looks up the addresses of her victims
(such background checks being widely offered on the
Internet). By simulating their DST devices, Eve is able
to steal their automobiles from their homes.

Example 3 (SpeedPassTM theft via active attack) Eve
carries a rcader and short-range antenna with her onto a
subway car. (Alternatively, Eve could carry a large
“package” with a concealed antenna in some public
place.) As she brushes up near other passengers, she
harvests chosen challenge-response pairs (along with
the serial numbers of target devices) from any
SpeedPass tokens they may be carrying. Later, at her
leisure, Eve recovers the associated cryptographic keys.
She programs the keys into a software radio, which she
uses to purchase gasoline. To allay suspicion, she takes
care to simulate a compromised SpeedPassTM only
once. Additionally, she hides the tag simulator itself
under her clothing, interacting with the pump reader via
an antenna passing through a sleeve up to an inactive
SpeedPass™ casing.

2.3 Fixes

The most straightforward architectural fix to the
problems we describe here is simple: The underlying
cryptography should be based on a standard, publicly
scrutinized algorithm with an adequate key length, e.g.,
the Advanced Encryption Standard (AES) in its 128-bit
form, or more appropriately for this application,
HMACSHAT [15]. From a commercial standpoint, this
approach may be problematic in two respects. First, the
required circuitry would result in a substantially
increased manufacturing cost, and might have other
impacts on the overall system architecture due to
increased power consumption. Second, there is the
problem of backwards compatability. It would be
expensive to replace all existing DST-based
immobilizer keys. Indced, given the long production
cycles for automobiles, it might be difficult to
introduce a new cipher into the immobilizers of a
particular make of vchicle for a matter of years. On the
other hand, it may be presumed from the Kaiser
presentation [14] that Texas Instruments has plans to

- 163 -

International Conference on Information Convergence

update their cipher designs in the DST. Additionally,
TI has indicated to the authors that they have more
secure RFID products available at present; in lieu of
specifying these products, they have indicated the site
www.ti-rfid.com for information.

3. Reverse Engineering

We now present the details of our attack.

The 40-bit cipher underpinning the DST system is
proprietary. We refer to this cipher, in accordance with
the Texas Instruments documentation, as DST40. The
only substantive technical information we were able to
locate on DST40 was a rough schematic available in a
presentation by Dr. Ulrich Kaiser, which was published
on the Internet [14], and in a published conference
paper [11] coauthored by Dr. Kaiser with Texas
Instruments employees. We show the schematic here in
Figure 1. Although the general form and arrangement
of functional components of the cipher are clear,
critical details about the logic and interconnections of
the components are lacking Moreover, as we shall
explain, certain features in the published schematic are
inaccurate, in the sense that they do not correspond to
the workings of the fielded versions of DST40 we have
examined. To distinguish over the DST40 cipher
employed in the implementations that we experimented
with, we refer to the cipher adumbrated in Figure 1 as
the Kaiser cipher.

We considered several initial approaches to
reverseengineering DST40. Software packages
available from TI may include the DST40 cipher.
These packages, however, include license agreements
that prohibit reverseengineering, so we did not make
use of them. We might alternatively have attempted to
probe a hardware implementation of DST-40. Lacking
the resources for this approach and aiming, moreover,
to explore the minimum resource requirements to
attack the DST system successfully, we rejected this
option. Instead, we chose to mount an “oracle” or
“black-box” attack. This is to say that we chose to
uncover the functional details of DST40 simply by
examining the logical outputs of a DST device. As the
keys of some DST devices are field-programmable, we
were able to experiment with a set of chosen keys and
inputs for DST40. For our experiments, we purchased a
TI Series 2000 - LF RFID Evaluation Kit; this kit
contained a reader and antenna, as well as a variety of
non-DST RFID devices. We were able to separately
purchase small quantities of DST devices in two
different form factors.

To explain our effort further, some nomenclature is in
order. As the TI schematic of the Kaiser cipher

suggests, DST40 is essentially a feedback shift register.
In each round of operation, inputs from the challenge
register and key register pass through a collection of
logical units. These yield an output value that is fed
back into the challenge register. We refer to the full
collection of logical units operating in a single round,
i.e., operating on a sin- gle set of inputs with no
feedback, as F. The function F comprises three logical
layers.

The first layer, represented in the schematic by
boxes fl..f16, consists of a collection of sixteen
functional units, each of which takes a small number of
bits from the key register and a small number of bits
from the challenge register and yields a one-bit output.
We refer to these functional units as f-boxes. Each f-
box takes either three key bits and two challenge bits or
vice versa; two special f-boxes take only two bits from
each register as input.

The second layer, represented in the schematic by
boxes f17...£20, consists of four functional units, each
of which takes as input the outputs of a set of four f-
boxes. We refer to each of these second-layer units as a
g-box. Finally, the third layer consists of a single
functional unit, labeled 21, into which feed the outputs
of the gboxes. This last functional unit, which we refer
to as the h-box, yields the output of the full function F.

There are two main technical lacunae in the TI
schematic. Reverse-engineering DST40 required that
we focus on these. In particular:

I. The schematic does not describe the logical
operations executed by the f-boxes, the g-boxes, and
the h-box.

2. The mapping of key and challenge bits to the fboxes

is governed by a routing array whose organization the

TI schematic does not describe. In other words, there is

no indication of which bits in the challenge and key

registers are input to which f-boxes.

In addition, as we shall explain, the TI schematic
contains some inaccuracies, in the sense that the Kaiser
cipher does not correspond exactly to DST40 as
implemented in DST devices. Critically, the function F
(and thus the h-box) in DST40 actually outputs a pair
of bits, and the clocking of the cipher is accordingly
different. Moreover, two bits in the challenge register
are XORed with the output of the h-box.

3.1 Obtaining a single-round output
Because we did not know the contents of the f-boxes,

or other critical details such as the configuration of the
touting networks in DST40, we could not directly

- 164 -

A Technique Sccurity Analysis Using Cryptography of RFID Device

verify that production DSTs, such as those that we
obtained for our experiments, implemented the Kaiser
cipher of Figure 1. Instead we had to test and exploit
structural features of the Kaiser cipher, using our
evaluation DST as an oracle.

We first noted that the only round dependence of the
Kaiser cipher is in the key scheduler. As seen in Figure
1, a 0 key, ie., string of ‘0° bits, will remain
unchanged in the key register throughout the cipher
execution. Using this key, it is possible to render each
step of the algorithm independent of the round in which
it takes place. We used the 0 key for the experiments
we now describe.

We next observed that each cycle, i.e., each
execution of F, results in only a small change to the
state of the challenge register: The contents of the
register are shifted right by one bit, and the output of
the h-box is inserted into the leftmost bit position.
Consequently, for any given value submitted to the tag,
the challenge register can assume only two possible
values after one clock cycle, depending on whether the
h-box outputs a ‘0’ ora ‘1" bit.

Digital Signature Transponder (3)

400 clocks *¥ 10 rounds

W Fokh 8 oK

T T T
SEENNRRY

R RIS AR RN R s
| Empmco ke Regu i ’ "%‘ AOIO 73 clocks

Digital Signature DST40 Algorithm implementation

Dr. Ulrich Kamer

Texas Instruments Devtschland GmbH

Figure 1. Schematic of Kaiser Cipher.

Using the DST as an oracle, we developed a test to
recover the output of the h-box for any value in the
challenge/response register (which for brevity we
henceforth refer to as the challenge register). Consider
a given challenge/response pair _C,R . Upon input of
C to the DST device, the challenge register initially
contains the bits of C. Let C_ denote the sequence of

bits in C excluding the last bit, i.e., the first 39 bits in C.

Based on our observation above, after a single cycle,
the challenge register in the DST contains one of two
possible sequences, either CO = 0|C_ or Cl = 1|C_,

where | denotes concatenation. Therefore, recovering
the output of the h-box can be reduced to a
determination of whether the challenge register
assumes the value C0 or C1 after the first cycle.

Fortunately, access to the DST as a challenge/response
oracle offers a simple way to make this determination.
If CO is truly the “next-state” value in the challenge
register, then application of the full encryption process,
i.e., the full 400 clock cycles on CO, will yield a result
identical to the encryption of C, but shifted one cycle
ahead. The original response R will therefore appear in
the challenge register exactly one clock cycle prior to
the encryption finishing. Thus, the final result, which
we call RO, will contain R, but shifted right by one bit.
Alternatively, if CO is not the next-state value of the
challenge register, the oracle will likely produce a
response unrclated to the original response R, as the
single-bit difference will tend to be amplified by the
cipher over hundreds of rounds. The analogous
observation holds, of course, for C1.

Based on the assumption that the encryption circuitry
in a production DST tag implements the algorithm of
Figure 1, we performed this test using an evaluation
DST purchased from Texas Instruments. First, we
programmed the DST with the 0 key, then submitted a
challenge C, along with the two possible “next-state”
values CO and C1.

Unfortunately, this test failed to produce the results
we expected, indicating that DST40, the algorithm in
the production DST, differs from the Kaiser cipher.
After submitting a number of properly-formed
challenges to the DST, we saw none of the expected
correlations — i.e., neither CO nor Cl produced
responses correlated to the original response R.

Through trial and error, we discovered that the
method of testing next-state challenge-register values
succeeded when we modeled the output of the h-box as
two bits. For a given challenge C, this required that we
instead compute four candidate next-state values, C00,
C01, C10, Cl11, i.e., one for each of the possible output
bit-pairs of the h-box. In our experiments, at least one
of these four candidates always produced a response
corresponding to the initial response R, but shifted
right by two bits.2 One possible explanation was that
the circuit alters its operation every other clock cycle,
causing our test to malfunction. It was far more likely,
however, that the production cipher DST40 simply
produces two bits per cycle. Such a divergence from
the diagram of Figure 1 called into question other
elements of the diagram, including the number of
rounds in the encryption process, and the key update
schedule.

With the ability to recover the output of F on a single

International Conference on Information Convergence

cipher iteration, we were able to use our oracle to
observe each round of a cipher exccution from start to
finish, by repeatedly guessing the next state of the
challenge register. This approach established that the
encryption process took place over 200 cycles, i.e., 200
executions of F, and that the DST draws its response
from the rightmost 24 bits of the challenge register on
the conclusion of this process.

3.2 Recovering the key schedule

Our experiments, as described above, relied on the
assumption that the 0 key remains constant through
every cycle of the encryption process. Using only the
_0 key, however, would restrict our ability to
experiment with the algorithm internals. We required
the ability to observe single-round outputs based on
different values in the challenge and key registers.

Using a non-zero key again made the algorithm
rounddependent, with the result that our previous tests
would no longer produce useful results. In order for our
“nextstate” candidate challenges to be encrypted
properly, we needed to provide the oracle with the
equivalent nextstate of the key register.

Our next step, therefore, was to reverse-engineer the
key schedule. Following the diagram, we assumed that
new key bits were computed every few cycles by the
exclusive-or of several bits of the key. By querying our
oracle, we determined that the key is updated every
three cycles, beginning with the second cycle — not the
first, as suggested by the Kaiser diagram. We also
determined that while four bits are indeed
exclusiveored together, they are not the bits shown in
the dia- gram. Let ki denote the ith bit in the key
register, beginning with 0. The actual key update is
defined by k0 = k39 k37 k20 kI18. Note that this
design represents an LFSR with a primitive-
characteristic polynomial, so all keys other than the 0
key produce maximal length sequences of key register
values. Using this model for the key schedule in place
of the_0 key, we were able to simulate steps of the
algorithm for any key.

With the_0 key, we only had to guess each of the
possibilities for the 2-bit output of a single round. To
experiment with a non-zero key k, we needed to guess
six successive bits (three bit-pairs) of output for the h-
box simultaneously, because the key schedule only
repeats every three cycles. (6 is the l.c.d. of 2 and 3.)
This meant testing 64 possible candidate challenge-
register states, {Cblb2b3b4b5b6}bl,b2,..,b6 {0,1}.
To test one of these challenge-register states, we
programmed into the DST device a key k_
corresponding to the key-register state after six cipher

cycles applied to k. A DST can process 6-8 challenges
per second, so this test requires a minimum of 8
seconds or so. It is thus significantly more time-
consuming than previous tests, although it returns the
output of three execution cycles, rather than one.

3.3 Uncovering the Feistel structure of DST40

Figure 2 shows the probability that modifying an
individual challenge bit results in a change to the
output of F. To measure this effect, we generated a
random key and challenge, then determined the output
of F. Next, for each of the 40 challenge bits, we
determined whether the output of F changed upon
flipping of the bit. We repeated this test for 150 initial
key and challenge settings. (We performed a similar
test involving the flipping of key bits, but the results
were not significant.)

Let ci denote the ith bit of the challenge register,
starting with 0. The first notable feature of our graph is
the effect of bits ¢38 and ¢39 of the challenge register.
While the other key and challenge bits have limited
influence on the output of a single round, these two bit
always affect the output of the h-box. Further
experimentation revealed that the two bits affect the
first and second bit of the two-bit round output
respectively. This indicated that the cycle output
derived from the exclusive-or of these bits with the
output of the F function.

The XOR effect of bits ¢38 and ¢39 shed new light
on the algorithm’s design. Not only is the algorithm an
invertible permutation, but it is a form of Unbalanced
Feistel Network [22].

For the DST, the choice of a Feistal cipher is not a
necessary choice, although a useful one. We speculate
that the round function was chosen to be a permutation,
so that the effect of collisions would not multiply, and
the responses would have a uniform distribution.

3.4 Recovering the bit routing networks

After identifying the general structure of the cipher,
our next step was to uncover the internal routing
network of bits, i.e., which bits act as inputs to each of
the f-boxes, as well as the boolean functions computed
by each fbox. We made the working assumption
(eventually validated) that the h-box (f21) is the only
box with a 2-bit output, and the rest each produce a
single output bit.

The structure of the Kaiser cipher is such that h
receives a single input bit from each of the g-boxes,
and produces one or four possible output values. This
fact lays the groundwork for identifying which bits of

- 166 -

A Technique Security Analysis Using Cryptography of RFID Device

the challenge and key are routed to cach of the g-boxes.
It is clear that altering a single input bit of h can at
most produce two distinct output values. In
consequence, altering the output of only one g-box can
never cause hto output more than two distinct values,
whereas altering the output of more than one g-box can
produce up to four distinct output values.

Using this simple but powerful observation, we
devised a test to determine which groups of input bits
from the challenge and key are routed into each of the
four gboxes. The test involves fixing a set of all but
two challenge or key bits, and then iterating through all
four combinations of these two bits. If at any time these
four bit combinations produce more than two different
outputs, then they cannot possibly be routed through
the same g-box. It should be noted that this test of g-
box membership produces false positives. In particular,
it is very possible (and indeed common) that for two
test bits that are not routed to the same g-box, and for a
given set of fixed bits, different value assignments to
the test bits still produce two or fewer distinct outputs
from the h-box. Therefore this test requires many
repetitions with different sets of fixed bits.

We employed this test first so as to exclude all bits
that are nof in the same g-box as bit 0 of the challengc.
After excluding 60 such bits, we discovered all of the
bits that are routed to gl. We repeated the test for the
remaining g-boxes, ignoring bits previously associated
with a g box so as to decrease the search space. To our
benefit, the routing network of bits that go through
each g-box is arranged in a rather regular pattern, and it
was not necessary to perform an exhaustive search.
After uncovering most of the bits related to gl, we
were able to infer and then quickly verify the remainder
of the g-boxes.

A slightly more complicated task lay in determining
the routing network for DST40, namely which bits of

the challenge and key registers serve as inputs to each
f-box.

Figure 2. Frequency of change in single round
output value on flipping of individual challenge bits.

We already know that altering the output of any
given fbox will only affect a single g-box, and therefore

causc the output of h to assume only one of two distinct
values. It is helpful, however, to note somec other
simple facts about the cipher. Let B= {bl ... b5} be a
set of challenge and key-register bits. Let B denote all
other bits in the challenge and key registers. Our
central observation is the output of the cipher will show
a special invariant if B is the set of input bits to a single
f-box.

A given f-box implements a fixed boolean function z
on five bit inputs. (Two of the f-boxes in DST40 have
only four inputs, but the principle is the same.) Let us
suppose that B is the set of inputs to this f-box. We can
then define AO to be the set of value assignments to the
bits in B such that z(bl . . . bS) = 0, and define Al
analogously for z(bl . . . b5) = 1. Observe that for a
fixed setting of B, the output of h will be invariant for
the setting of B to any value in AQ. Likewise, for a
fixed value assignment to B, the output of h will be
invariant for any setting of B to a value in Al.

In contrast, suppose that B consists of register bits

are are input to two or more f-boxes. In this case, wc
are unlikely to see the invariant we have just described.
For some, and perhaps many settings of B, any given
set of value assignments A0 (or Al) may induce
multiple output values in h.
Using our invariant, we can perform a test to exclude
combinations of bits that cannot be inputs to the same
fbox. We first select a set B of five bits. We fix all ther
bits B in the challenge and key registers. We iteratc
over all 32 value assignments to B and record the
pattern of outputs from F. It may be the case that only a
single output of h results, in which case we repeat the
experiment. In the case that there are two distinct
outputs from F, we record their correspondence to input
values, 1.c., we construct a hypothesis for Ao and Ai.3
We repeat this experiment over a new setting of B. If we
do not see the invariant described above for Aoand Al,
then B cannot consist of inputs to a single f-box. We
successfully repcated this test until we excluded all
possible f-box input combinations except the correct
ones.4

On first inspection, it would appear as though there is
a large number of possible sets of input bits to any given
f-box. In fact, though, we can narrow the pool of
candidate scts thanks to two observations: (1) The set of
inputs to a single f-box must also serve as inputs (at one
remove) to the same g-box; and (2) For any f-box, three
input bits come from the challenge register and two from
the key register (or vice versa). By working with inputs
corresponding to a single g-box and by searching in
particular for the f-box that includes bit 0 of the
challenge register, we started with a search space of size
only (19/2 x20/2)+(19/1)x(20/3) = 54150. Moreover,

- 167 -

International Conference on Information Convergence

once we identified the inputs to one f-box, each
subsequent fbox corresponding to the same g-box had
far fewer combinations of input bits to test.

Furthermore, again to our benefit, the f-box inputs in
DST40 are ordered in a very regular manner. In
particular, given the structure of inputs associated with
one gbox, we were readily able to infer those for the
remaining g-boxes.

4. Key Cracking

We were able to verify that our reverse engineering
of the DST40 algorithm was successful by testing
whether the responses computed by a software
implementation of our hypothesized algorithm matched
those returned by an evaluation DST when given the
same challenge and key.

We also wished to test our implementation against
actual fielded tags in SpeedPasstm tokens and
automobile ignition keys. The cryptographic keys in
these devices are immutable once locked at the factory.
Without knowing the key on a fielded tag, we had no
way to determine whether the algorithm used by such
tags was as hypothesized. Therefore, recovering an
actual key became necessary.

5. RF Protocol Analysis and Simulation

Low-frequency RFID systems typically make use of
powered readers and passive transponders. In the DST
system, the reader transmits power to the transponder
via a 15-t0-50 ms electromagnetic pulse at 134.2 kHz.
Once powered, a transponder can receive and respond
to commands from the reader, including challenges and
read and write operations. The transponder can also
execute computations, including as cryptographic
operations.

A reader transmits commands as a sequence of
amplitude-modulated (AM) bits. Once a power burst
has ended, the reader signal will drop significantly in
amplitude for some period of time. It is the duration of
this “off-time” that communicates a bit value to the
transponder. A short oft-time duration specifies a ‘0’
bit, while a longer duration specifies a ‘1’ bit. Between
each bit transmission, the reader signals returns to full
amplitude in order to delimit the off-time intervals and
maintain the powered state of the transponder. In some
cases, after sending a command to a transponder, a
reader will transmit a short, supplementary power burst
to energize the tag fully.

Once the transponder has fully received and
processed a command, it discharges its stored power,
while transmitting its response using frequency

modulated frequency shift keying (FM-FSK). It
communicates a bit via 16 RF cycles, specifying a ‘0’
or ‘1’ bit by transmitting at 134.2 kHz or 123.2 kHz
respectively.s A preamble of ‘0’ bits followed by a start
byte (7E hex) indicates the start of a transmission and
allows the reader to synchronize.

6 . Conclusion

The weakness we have demonstrated in the TI system
is ultimately due to the inadequate key-length of the
underlying DST40 cipher. It is quite possible, however,
that cryptanalysis will reveal weaknesses in the cipher
itself. Indeed, we have preliminary experimental
evidence that promises effective cryptanalytic attack.
This would improve the efficacy of the attacks we have
described. The authors hope that future cryptographic
RFID system designers will embrace a critical lesson
preached by the scientific community: Cryptographic
hardware systems are generally strongest when they
employ industry standard cryptographic algorithms
with key lengths sufficient to endure over the life of the
devices and assets they protect.

7. References

[I1 Automotive immobilizer anti-theft systems
experience rapid growth in 1999, 1 June 1999. Texas
Instruments Press Release. Available at
http://www.ti.com/tiris/docs/news/news_releases/90s/re
106-01-99.shtml

2] SpeedpassTM Press Kit Fact Sheet, June 2004.
Referenced at http://www.exxonmobil.com

[3] Security and privacy in rfid systems, 2005. Web-
based bibliography. Referenced at
http://lasecwww.epfl.ch/gavoine/rfid /
[4] ANONYMOUS USER. RC4?,
Sci.crypt posting.

[5] BIHAM, E., AND SHAMIR, A. Differential fault
analysis of secret key cryptosystems. In CRYPTO ’97
(1997), B. Kaliski, Ed., Springer Verlag,pp. 513-525.
[6] BIRYUKOV, A., SHAMIR, A., AND WAGNER,
D. Real time cryptanalysis of A5/1 on a PC. In Fast
Software Encryption (FSE) (2000),pp. 1 18.

[7] BOURQUE, D. Technology update, chip status and
development, October 2004. Slide presentation.
Referenced at http://www.ris.averydennison.com

September 1994.

- 168 -

