Sense Hardware Backup Algorism of 3D Game Engine

Sense Hardware Backup Algorism of 3D Game Engine

Henrik Aamisepp, Daniel Nilsson
Department of Computer Science, Lund Institute of Technology, Canada

Abstract

The aim this master thesis is to find out if is possible
to Integrate haptic havdware support in the source 3D
game engine Crystal Space. Integrating haptic support
would make it possible to get a haptic representation
of 3D geometry in Crystal Space and therefore take
advantage of all the benefits a 3D game engine
provides, when building haptic applications, An
implementation of the support should be as low-cost
as Possible by taking advantage of available source
haptic API alternatives.

The thesis report presents an evaluation of available
haptic APIs and comes up with a design and an
implementation. The solution has been implemented as
a Crystal Space plugin by using modified parts of the
e-Touch open module APl The plugin makes it
possible to utilize the Phantom haptic device to touch
and feel the 3D environments in a Crystal Space
application. Two demo applications have also been
constructed to show the capabilities of the plugin.

1. Introduction

At the Department of Design Sciences at Lund of
Technology there is a division for rehabilitation
engineering called Certec. Among other things they do
Research on how to make computers accessible to
blind and visually impaired people through the use of
haptic technology. This means that they try to make it
possible to use computers by using the sense of touch
to navigate through a 3D interface. The force feedback
hardware that is available in stores today cannot
provide the accuracy that is needed for such a task.
However there is available hardware that can be used,
such as the Phantom haptic device from Sensable
Technologies, Inc. The problem is that this hardware is
very expensive and is therefore not available to a great
extent. This in turn means that there are only a few
APIs available for creating haptic environments and
they do not always provide the same possibilities to
easily create good 3D applications as for example a

game cngine would. The APIs are not designed to be
integrated with other systems that can provide this
functionality either.

The wish is that it should be possible to build large
3D environments that the user can navigate in and use
the haptic device to touch the surroundings. There
kinds of environments are very common in modern 3D
computer game and thus it would be desirable to have
support for haptic devices in a 3D game engine. This
would make it possible to create 3D environments
using existing 3D map editors, or perhaps even to use
existing 3D game maps that can be downloaded form
the Internet.

This master thesis is a collaboration between Certec
and the Department of Computer Science at Lund
Institute of Technology. The idea is to add support for
haptics in the open source game engine Crystal Space,
by using parts of available haptic APIs, such as ¢ —
Touch from Novint Technologies, Inc. or GHOST from
Sensable Technologies Inc. It is required that the
solution should support the Phantom haptic device, but
it would be advantage if there also was support for
other force feedback devices.

2. Haptices

2.1 Introduction to haptics

Haptics originates from the Greek word haptesthai
(“to touch™) and is a science that studies the sense of
touch. In the computer world, haptics deals with using
the sense of touch to control and interact with a
computer application. To be able to do this, special
input/ output devices, such as joysticks, wheels, data
gloves or more advanced devices are connected to the
computer.

The feedback from these devices is delivered as felt
sensations to the user’s hand or other parts of his body.
The user can then interact with this feedback and

- 125 -



International Conference on Information Convergence

contro} the application according to the sensations he
experiences. By using a haptic device, three
dimensional virtual objects do not only have to exist as
graphics, but they can also be represented in haptics as
physical objects. This opens up a lot of possibilities for
many different kinds of applications. For example,
haptics have been utilized to train people in surgery
and operation of machines in hostile environments.
Additional examples of the usc of haptics include the
entertainment business, where haptics has been used to
give the player force feedback of the events occurring
in a computer game. Haptics can also help to guide
blind and visually impaired people in computer
applications.

2.2 History of haptics

One may think that the development of haptic
devices and the applications adherent to them
originates from the development of virtual reality, but
this is actually incorrect. The first devices that one may
state as haptic devices come from the teleoperation
systems of the 1950s and 60s . In a teleoperation
system, the user controls and manipulates objects from
a remote location. These systems often use bilateral
Master-Slave Manipulators (MSM), in which a master
device follows and interacts with a remote slave device.
A Class example of the field of application for MSM
is within dangerous or unhealthy environments, like the
handling of unclear waste or underwater operations. In
these cases some type of a mechanical arm is used as
the master unit and a smaller similar reproduction of
this used as the slave device. These systems used to be
all mechanical, but they were later made electrical
which enabled the operator to work further away from
the site. It also allowed the introduction of so called
servomanipulators, which could give force feedback to
the slave device.

3. Evaluation of haptic APIs

In this chapter an evaluation of GHOST and e- Touch
will be made and a conclusion will be drawn whether e-
Touch API, GHOST API or another solution will be
used. Reachin API will not be evaluated the decision
has been taken that its software license costs too much
to be used in this project.

3.1 GHOST

In this project we have used GHOST version 3.1.
However, version 4.0 of GHOST has recently been
released. The new version does not provide any speed

improvements, but it does provide a new gstDevicelO
class that can be used to create non- GHOST controlled
servo loops. It should also include several bug fixes
and make it easier to directly access the Phantom. This
version was not available at Certec so we have not been
able to try if this would have been easier to use for
integrating haptics in Crystal Space or give other
evaluation results.

A drawback for GHOST is of course that a software
license costs money. However to buy a license 1s not as
expensive as buying a Reachin API license. A GHOST
License costs 2500€ compared to a Reachin license
that costs beyond 11000€. A haptic API that has a
reasonably cost or is completely free of charge would
obviously be best suited for this project.

One problem with GHOST is that because it is not a
free API, the source code is closed. This means that it
is not possible to make changes where the haptics loop
is calculated. For example, it is not possible to change
the way collision detection, culling or force calculation
is made. One way to introduce self-calculated forces
however is to use a special force field node that is
calculated in every update. This way it is possible to
assign any forces at any time. Actually this is how e-
Touch is originally constructed. The e- Touch driver
class uses a scene with only a gstPhantom node and a
gstForceField node. This is why, as mention before, e
Touch is not really a completely independent APL

3.2 e- Touch

One of the main problems that we observed in e-
Touch was the difficulty to disconnect the haptics part,
which we wanted to take advantage of, from the
graphics part. As mentioned before the central object in
e-Touch is the user class. This class starts both a
graphic manager part and a haptic manager part. But if
one only wants to use the haptics part it is no just to
remove the start of a graphic manager. Some graphics
calls were buried deep down in the code so it took a lot
of time to understand and remove this. Hopefully the
graphics part will be better disconnected from the
haptics part in future releases of e-Touch.

Another issue that can be said to be of concern is that
e-Touch is still in the bera stadium. The current release
used in this project is version 1.0.0 beta3. When
looking through the code one notices a few hacks and
comments at certain places. This means that everything
may not yet have been thoroughly tested and structured
in the best way.

- 126 -



As it stands now c- Touch currently works on
Windows NT, Windows 2000 and Windows XP
platforms. GHOST on the other hand also supports the
Red Hat Linux platform. This is kind of a disadvantage
for e- Touch because Crystal Space also supports the
Linux platform and the plugin cold then perhaps have
been made to support more platforms.

4. Game engines
4.1 Introduction to game engines

When creating a 3D game one needs software that
handles the virtual environment and renders it to the
screen. There is also nced for software that handles for
example physics and collision detection. These tasks
are handled by the 3D game engine. One can say that
the game engine is what powers the game. It is a
platform upon which the game is built and it provides
functionality that is common to all games, such as the
things mentioncd above and also the access to various
hardware devices, for example keyboard, mouse,
Jjoystick, graphics accelerator, network card and so on.
The advantage of a 3D game engine is that it is not
necessary to create a new gamc engine for every new
game. Instead a developer can reuse the same game
engine over and over again. This saves the game
developer from a lot of work when creating new games,
but also makes it ecasier to enhance or add features to
the game engine itself. The game engine performs a lot
of time consuming tasks, so every enhancement that
can bc made to the engine may provide for new
possibilities for the game developer.

4.2 Crystal Space

The game engine that is used in this project is called
Crystal Space. It is a free 3D game development kit
written in C++ and it is being developed as an open
source project. Crystal Space has most of the features
that are needed in a 3D game engine, but it is still
under development, which means that it is constantly
being improved with new features. Since it is an open
source project with hundreds of people working on it
all around the world the documentation of the system
sometimes is worse than desirable which can make
Crystal Space a quite difficult system to use. However
it is the open source development approach that makes
Crystal Space worth looking at in the first place.
Crystal Space falls under the GNU copyleft license for
libraries, which means that anyone is allowed to use it
in their products and even to sell their products using

Sensc Hardware Backup Algorism of 3D Game Engine

Crystal Space provided that Crystal Space itself
remains free. This approach makes the Crystal Space
development kit desirable to game developers because
it is free of charge and since it is open source they can
even make changes in the game engine itself to
customize it to their own game.

As mentioned above Crystal Space has many features.
For example, it supports six degrees of freedom,
colored lighting, mip-mapping, sectors and portals,
mirrors, procedural textures, particle systems, OpenGL
rendering, collision detection and physics, and it also
has a flexible plugin system.

The remains of this chapter will provide an
explanation to how the Crystal Space game engine
functions. The default main loop is explained and also
how it controls the execution using the event system.
How a 3D cnvironment is built up using meshes and
also how this environment can be rendered to the
screen are other topics that will be given an explanation
here. There is also an explanation of the collision
detection system as well as the dynamics system that
are used in Crystal Space since they arc important to
our project. To get a more comprehensive knowledge
about Crystal Space one should examine the user’s
manual [1]. The game engine is updated fairly often so
it can also be useful to check out the homepage [13] for
the latest news. There is also a Crystal Space developer
homepage [14] with a forum and mailing lists.

5. Design

When we started to look at how to inergrate haptics
with the game engine, we decided quite fast that a
plugin to Crystal Space was the best way to do it.
Implementing the haptics part as a plugin divides up
the functionality in a very nice way so that the haptics
does not affect other functionalities in the game engine.

This chapter is a detailed description of the design of
the plugin, but it also presents the problems that we
encountered in the development stage and how we
chose to solve them.

5.1 Task

The intention with the plugin is that it should provide
a haptic representation of the geometry contained
within the Crystal Space making it possible to feel the
environment of the camera and changes in the
environment such as movements of dynamic objects.
When the camera is moved in the application the

- 127 -



International Conference on Information Convergence

phantom should give the sensation of moving with the
camera. The phantom workspace can be thought of as
being attached to the camera and oriented in the same
direction. When an object is moved in the application,
for example due to gravity, and collides with the
phantom pointer, the movement should be felt through
the phantom. This should also work in the other
direction, that is, if the user presses the phantom
pointer against an object that is a dynamic object, the
object should start to move if the force is sufficient.
Furthermore there should be a possibility to set
different haptic properties for object. By modifying
these properties the user will be able to feel a variety of
sensations.

5.2 Program structure
5.2.1 GHOST and e-Touch parts used

After the evaluation of GHOST and e-Touch we
decided only to use a small part of their functionality
and to implement the rest ourselves. For example, the
part of the plugin that keeps track of all the haptic
objects and the part manages the force collection from
the objects are not taken from the APTs.

As in e Touch, we use a small GHOST scene graph to
be able to communicate with the phantom device. The
scene graph contains a gstPhantom node, which is
needed to be able to retrieve the status of the phantom
and also to be able to change its tsatus. In our case it is
the position of the stylus that is retrieved from the
phantom device and it is the position of the phantom
workspace that needs to be changed when the camera
moves around in the 3D environment. There is also
need for a gstForceField in the scene graph. The force
field is needed to be able to send forces directly to the
phantom because GHOST is not used for the haptic
calculations.

Root (gstSeparator)

gstSeparator gstForceFicld

gstPhantom

Figure . The small GHOST scene grapb used in
the plugin to communicate with the pbantom.

Other things that we also use from e- Touch are
modified versions of the haptic objects classes. These
classed are used to represent the objects and they
contain the force calculation algorithms. To make these
classes fit into the rest of our plugin we examined them
thoroughly. We then removed as much code as possible
that was not needed for the force algorithm to work and
made a few changes to create a more suitable interface.
There are also other parts of the e- Touch API that are
used but they have not been modified in any way.

5.3 Threads and processes

When the plugin is used together with Crystal Space
there are two different processes running parallel to
each other. There is the graphics loop that is run by the
game engine and the servo loop, which is needed to
update the haptic device with forces. As mentioned
before the Phantom needs a very high update rate
whereas the demands on the frame rate are not that high.
The servo loop is therefore run at a fairly constant
speed while the graphics are run without a minimum
frame rate, which in practice means as fast as possible.

To communicate with each other the two loops use
shared variables that are protected through the use of
semaphores for mutual exclusion. The semaphore
ensures that only one thread at a time is able to read or
write a shared variable. If one thread is inside a critical
region and the other one should try to take the
semaphore at the same time, it will have to wait until
the semaphore is released again before it can access the
shared variable.

5. References

[1] J. Tyberghein, A. Zabolotny, E. Sunshine, T.
Hieber, M. Ewert, S. Galbraith, 2003, “Crystal Space
Open source 3D Game Toolkit Documentation”,
Edition 96.003.1 for Crystal Space 96.003.

[2] 2000, “GHOST SDK Programmer’s guide”, version
3.1, Sensable Technologies, Inc., Woburn MA

[3] 2001, “e-Touch Programmer’s Guide”, beta release
1.0, Novint Technologies, Albuquerque NM.

[4] 2001, “GHOST SDK API Reference”, version 3.1,
Sensable Technologies, Inc., Woburn MA.

[5] 2001, “e-Touch reference manual”, version 1.0.0

beta 3, Novint Technologies, Albuquerque NM.

- 128 -



