
AbstractAbstractAbstractAbstract

In this paper, recognizing the importance of the
database query optimization design methods, we
implemented mobile database with mobile program
(J2ME) which is a useful database procedures.
In doing so, we emphasize the logical query
optimization which brings mobile database to
performance improvement.
The research implies that the suggested mobile
program (J2ME) would contribute to the
realization of the efficient mobile database as the
related technology develops in the future.

Keywords:Keywords:Keywords:Keywords:

Database Query Optimization; Mobile Database;
Mobile computing; Multi query approach

1. Introduction1. Introduction1. Introduction1. Introduction

The mobile database, or embedded database on a
mobile device, is starting to become an important
player in the industry. To make data management
and sharing easier, there is a strong need for

developing mobile database systems for mobile
devices[5].
The embedded database on a mobile device is
going to be the pioneer in the future mobile
industry and it will challenge all the centralized
database storage[7]. The query optimization of
such databases will be more reactive than the
traditional databases used for mobile devices.
Many challenges to develop these small databases
are being tried on portable computing device,
including smart phones, PDAs (personal digital
assistances), intelligent appliances and other
embedded systems.
Miniature databases attached in mobile devices
can interact through queries on a wireless
communication. Omnipresent database attaches
such DBMSs to real world "object" physically,
and then allows different organizations to share
information retrieved directly from physical goods,
materials, or persons. We are trying to describe
in this paper how to manage omnipresent
database in the context of mobile commerce
applications and how the J2ME based on mobile
program can be used for the optimization
database multi-query management in mobile
devices.

The Design of the Selection and Alignment Queries UsingThe Design of the Selection and Alignment Queries UsingThe Design of the Selection and Alignment Queries UsingThe Design of the Selection and Alignment Queries Using

Mobile Program (J2ME) for Database Query OptimizationMobile Program (J2ME) for Database Query OptimizationMobile Program (J2ME) for Database Query OptimizationMobile Program (J2ME) for Database Query Optimization

Cheon-Hong MinCheon-Hong MinCheon-Hong MinCheon-Hong Minaaaa ,,,, PrasannaKumarPrasannaKumarPrasannaKumarPrasannaKumarbbbb

a
Dept of Technical Management Information System

Woosong University Lecturer

17-2 Jayang Dong Dong Ku Daejeon 300-718

Tel : +82-42-630-9853, Fax : +82-42-630-9859, E-mail : minch22@chol.com

b
Dept of Technical Management Information System

Woosong University Lecturer

17-2 Jayang Dong Dong Ku Daejeon 300-718

Tel : +82-42-630-9856, Fax : +82-42-630-9859, E-mail : pkumar@woosong.ac.kr

620

2008년 한국경영정보학회 춘계학술대회

The logical database design which transforms the
real world entities to physical database designs
has significantly affected the database system
platform we want to be implemented properly.
The logical database design process is able to
determine desirable features reflecting
organizational contexts.
Embedded system developers increasingly use
Java, especially as microprocessors improve in
their speed executing Java code. Sum
Microsystems’ J2ME, with its flexible user
interfaces, robust security, and built-in
networking, is proving especially popular for
consumer electronics and mobile devices. Later,
we will use J2ME to embody the possibility of
mobile database although many types of mobile
database products have been commercialized.
Particularly, the logical database design
emphasizing user's perceptive has made
differences in the performance of organizations
with equivalent physical database resources.
There are many important issues about the logical
database design, one of which is related to the
optimization of database query. Database users
have recognized that SQL programming for data
manipulation is very important because it would
make a difference in the organizational
performance.
In particular, mobile database is highly costly in
communication since it requires decentralization
query strategies due to its mobility property[11].
Its implementation may need complicated methods
so that we should optimize query strategies to
meet the mobility property.
This research suggests an optimized query
approach where the mobile program generates a
database table, and a query program is designed
that efficiently selects and aligns the records
stored in the table.
In doing so, we emphasize the logical query
optimization which brings mobile database to
performance improvement.
The research implies that the suggested mobile
program (J2ME) would contribute to the
realization of the efficient mobile database as the
related technology develops in the future.
The rest of paper is organized as follows :
Theoretical Base is discussed section 2, In section
3, Design of Query program is described in

details. Finally, we shall conclude the paper in
section 4.

2.2.2.2..... Theoretical BaseTheoretical BaseTheoretical BaseTheoretical Base(Concept of Mobile(Concept of Mobile(Concept of Mobile(Concept of Mobile
Database)Database)Database)Database)

2.1 Efficiency of Database Query2.1 Efficiency of Database Query2.1 Efficiency of Database Query2.1 Efficiency of Database Query

Many databases support decision-making. Often
this means choices between alternatives according
to partly subjective or conflicting criteria.
Database query language is generally designed for
precise, logical specification of the data interest,
and tend to be a awkward in the aforementioned
circumstances.
When constructing the logical database design,
the user, especially DBA (Database Administrator)
needs a careful contemplation: he should be able
to maximize efficiency relative to effort by
making a design that reduces of cost database
system operations. An inefficient database design
would lead DBA to being blamed for low quality
operations of database system[6].
The efficiency of database query is based on
some criteria that how fast is the accurate
retrieval of specified data and how its beneficial
for the user query.
Object-oriented database system for Java relies
on the language’s reflection capability to inspect
the object format at run-time and discovers the
format of the stored object. But J2ME, which
targets small-footprint and embedded system,
omits reflection due to this function’s complexity
and resource requirements. This has limited the
availability of OODBMSs for J2ME.
Most DBMS adhere to a widely accepted
relational database model. A database model is a
description of how data is organized in a
database. In a relational database model, data is
grouped into tables using a technique called
normalization, which you’ll find about later in this
chapter.
Once a database and at least one table are
created, a J2ME application can send SQL
statements to the DBMS to perform the following:
Save data, Retrieve data, Update data, Manipulate
data and Delete data.
Let's consider a case where Table 1 consists of
10,000 records and Table 2, 1,000 records.

621

Retrieving records from Table 1 first, then from
Table 2 and finally Table 3, as seen below in
Figure 1 is a less efficient performance procedure
than selecting reversely as in Figure 2. Actually,
Figure 2, an appropriate database query is
superior to Figure 1, an inappropriate query:
Figure 2 needs at most 6 accesses, while Figure
1 needs at least 10,000 accesses.
We must seek for efficient record access
methods that enable us to save time and cost.

1 A
2 C
3 D
4 K
5 M
6 F
7 I
8 M
.. ..
.. ..

A Ⅰ
B Ⅱ
C Ⅳ
E Ⅴ
E Ⅵ
F Ⅴ
.. ..
I Ⅱ

Ⅳ 10
Ⅴ 20

.

TABLE 1 TABLE 2 TABLE 3

(10,000 Rows)

(1,000 Rows)

(2 Rows)

Figure 1 - Access Query from Tables : Case 1

A Ⅰ
B Ⅱ
C Ⅳ
E Ⅴ
E Ⅵ
F Ⅴ
.. ..
I Ⅱ

Ⅳ10
Ⅴ20

1 A
2 C
3 D
4 K
5 M
6 F
7 I
8 M
.. ..
.. ..

TABLE 1 TABLE 2 TABLE 3

(2 Rows)

(1,000 Rows)

(10,000 Rows)

Figure 2 - Access Query from Tables :
Case 2

Figure 3 - Multi query

In the above, given multi query approach, we
have to implement one method for retrieving
required data from the multiple (three) tables. In
the case of SQL server, it is an easy way that
we can figure it out a joined query or sub query
in the table structure. In the example, faculty
table contains the primary key a teacher_code,
which is the foreign key of the student table and
the Dept_code, which is the primary key of Dept
table, is the foreign key of student table.
So all the entry of the student table must
undergo with the referential integrity with
reference to the Faculty table and Dept table. In
such case, there should not be one entry in the
student table, which does not match with the
teacher_code in faculty table or Dept_code in the
Dept table.
So we can assign student table and Dept tables
as the transaction table and faculty table as the
master table. Keeping mind these criteria we have
to take care the SQL when we create the all the
three tables.

622

2.2 Query Optimization2.2 Query Optimization2.2 Query Optimization2.2 Query Optimization

Query processing in mobile database systems is
significantly different from that in stationary
systems and must hence be performed using
different techniques[10].
Namely, the mobile system has to take into
account limited resource like energy,
communication bandwidth etc. And typical queries
require to locate mobile users.
Query optimization is a common task performed
by database administrators and application
designers in order to tune the overall performance
of the database system. Even if you have a
powerful infrastructure, the performance can be
significantly degraded by inefficient queries.
Therefore, query optimization has significantly
influenced database performance in the strategic
planning step for executing query. Thanks to
query optimization, database SQL program allows
us to use a high level query language beyond
low-level data processing language.

2.3 Mobile Database2.3 Mobile Database2.3 Mobile Database2.3 Mobile Database

2.3.1 Mobile computing environment2.3.1 Mobile computing environment2.3.1 Mobile computing environment2.3.1 Mobile computing environment

As seen below in (Figure 4), mobile computer
environment is composed of wire network and
mobile hosts such as naptop computer, PDA, and
mobile phone[8]. Mobile hosts communicate with
the wire network computer, so called, mobile
support station(MSSes). Each of mobile support
stations manages mobile hosts to operate properly
within a supporting geographical range, so called,
a cell.

source : Data Management Issues in Mobile and
Peer-to-peer Environments.2002

Figure 4 - Mobile Computing Environment

As a part of a mobile database system, a mobile
host acts as a data client and a data server at
the same time. A mobile hosts as a data server,
is to support basic transaction operations such as
read, write, commit and abort[2].
A fixed host called location server keeps
information of location of all mobile hosts located
within its management coverage. Location servers
act as routers and are connected hierarchically by
a high speed fixed network, where leaf nodes
represent MSSes and non-leaf nodes represent
location servers.

2.3.2 Mobility property and optimum locating2.3.2 Mobility property and optimum locating2.3.2 Mobility property and optimum locating2.3.2 Mobility property and optimum locating

It is difficult to fix network addresses in mobile
computing because of mobility property.
Therefore, we have a difficult choice problem of
selecting the best method to optimize locating the
database that we wish to reach.
Much work has been conducted on moving
objects, e.g., to keep track of mobile locations in
telecommunication, transportation or traffic
regulation applications.
It is said that it is still difficult for an optimizer
to handle query processes even with a recent
research results.

2.3.3 Query process in mobile database2.3.3 Query process in mobile database2.3.3 Query process in mobile database2.3.3 Query process in mobile database

A mobile computing environment directly affects
the optimum strategy on mobile database query
process. In general, mobile database query
strategy is matched with decentralized query
strategy because of mobility. Of course, in this
case we should take into account communication
costs resulting from decentralization.
In addition to costs of decentralization, the two
features, mobility of mobile hosts and low
integrity of wireless network, may make it
difficult to adapt to mobile database the database
model with fixed computer network[1]. Therefore,
mobile database should have mobile transaction
mode with more flexible structures.
We apply multiple query optimizations to batches
of pull (on-demand) requests in a mobile database
system. The resulting view can answer several
queries at once, and it is broadcast on a view

623

channel dedicated to common answers of multiple
queries rather than over individual downlink
channels. A performance study is conducted that
simulate different query workloads. The results
indicate a significant saving in channel bandwidth
usage and a reduction in average wait time for a
multi-query approach compared to a traditional
pull-based approach.

3. Design of Query Programs3. Design of Query Programs3. Design of Query Programs3. Design of Query Programs

DB Query is distributed client/server application
for querying on databases with data protection
against unauthorized access. It is portioned into
two logical units, which run in conjunction on
separate machines-thin client and remote server.
In order to show query optimization with a
mobile program, J2ME, especially selection query
and alignment query out of the J2ME procedures,
first we construct a "Student" table, secondly
present SQL (Structured Query Language)
program that is made according to relational
database procedures.
Also, with mobile program (J2ME) we implement
the process to which relational database is
provided. That is, we reconstructed the "Student"
Table. We implement selection and alignment
query with mobile program (J2ME) methods.
Through this process, we would like to emphasize
the embodiment on mobile database.

3.1 Database Table Design3.1 Database Table Design3.1 Database Table Design3.1 Database Table Design

First of all, we have to construct the student
table in SQL Server as follows. Let’s take an
example of students in a university, who take
courses at a particular point in time.
The data that belongs to a student are his ID,
name, course name, term, advisor (professor)
code, department code that he belongs to, course
taken and the time of the course taken.
Suppose we are interested in searching students
who meet a certain criterion.

create table stud_tb (stud_id int constraint pk_id
primary key, stud_name varchar(30),
course_name char(25),term char(3), Prof_code
char(10), Dept_code char(10))

Similar way the all the other tables also have to
be designed.

Figure 5 - student table

In general, database queries for special purpose
are constructed using SQL as follows. The
purpose of presenting the following queries is to
show how to construct queries for the equivalent
purpose in the mobile case.

3.1.1 Query searching from multiple databases3.1.1 Query searching from multiple databases3.1.1 Query searching from multiple databases3.1.1 Query searching from multiple databases

Database Query is distributed client/server
application for querying on database with data
protection against unauthorized access.
As in this case whenever we want to search
query from multiple databases, we have to give
emphases in data integrity, security and
optimization methods.
A typical example is given below.
Join queries will be a better optimization method
than the sub queries. So we implement join
queries here.
select a.stud_id, a.stud_name, a.coursename,
a.fees, b.dept_name, c.teacher_name from
stud_tb as a join dept_tb as b, Faculty_tb as c on
a.dept_code=b.dept_code and
b.teacher_code=c.teacher_code

hence multiple join retrieve the queries.

624

3.1.2 Query searching for certain conditions3.1.2 Query searching for certain conditions3.1.2 Query searching for certain conditions3.1.2 Query searching for certain conditions

Conditioned queries rapidly process the results
and save the cost and time.
For example, let’s search for the students who
took particular course.
select a.stud_id, a.stud_name, a.coursename, a.fees,
b.dept_name, from stud_tb as a join
dept_tb asb on a.dept_code=b.dept_code where
a.coursename='Java' or a.coursename='SQL'

3.1.3 Query aligning3.1.3 Query aligning3.1.3 Query aligning3.1.3 Query aligning

For example, if we want to align students in the
order of student id we can do it as follows.
select a.stud_id, a.stud_name, a.coursename, a.fees,
b.dept_name, from stud_tb as a join
dept_tb as b on a.dept_code=b.dept_code order

by a.stud_id

The alignment query output of this kind would
help us to obtain valuable information such as
interest, course royalty, and course-taking trends.

3.2 Design Queries Using Mobile Program3.2 Design Queries Using Mobile Program3.2 Design Queries Using Mobile Program3.2 Design Queries Using Mobile Program
(J2ME)(J2ME)(J2ME)(J2ME)

Sun’s J2ME(Java 2 Micro Edition) wireless toolkit
supports the development of java application that
can be executed on mobile devices[10]. Therefore,
J2ME is adopted to implement the mobile
database.
Now, many types of mobile database is realized
and has been served from many products. This
paper focus on mobile program such as J2ME
among the methods that is possible to construct
mobile database.
Therefore, using J2ME, if we can show the
queries of database, we suggest that mobile
database be possible to embody. So, this paper is
an example paper about constructing modern
mobile database techniques.
This paper is emphasized that a forementioned
query optimization of database can be possible by
J2ME program such as table construction, search,
selection and aliment.
As mentioned before, we would like to present
how to construct queries in the mobile
program(J2ME) for same purposes as in the

general database case although many types of
mobile database have been commercialized.

3.2.1 Database table design using "Class"3.2.1 Database table design using "Class"3.2.1 Database table design using "Class"3.2.1 Database table design using "Class"

First, we want to store 6 fields from the
"Student" table: stud_id(int), stud_name(var),
course_name(char), term(char), Prof_code(char),
Dept_code(char). To do it, we must construct
"Class" by mobile program as follows.
//--

Public class Student {

Private int stud_id ;

Private var stud_name ;

Private char course_name ;

Private char term

Private char Prof_code

Private char Dept_code ;

...

}

--//

3.2.2 Query searching the whole students (at3.2.2 Query searching the whole students (at3.2.2 Query searching the whole students (at3.2.2 Query searching the whole students (at
random)random)random)random)

//--

public class GradeDB {

RecordStore rs=null;

. . .

public Vector retrieveALL() {

RecordEnumeration re=null;

Vector apps = new Vector();

Try {

re = rs.enumerateRecords(rf, rc, false);

while(re.hasNextElement()) {

int rec_id=re.nextRecordId();

apps.addElement(new Appointment(rec_id, rs.getRecord(rec_id)));

}

} catch (Exception e)

Finally {

if(re!=null) re.destroy();

}

return apps;

}

. . .

}

--//

In the above program, retrieveAll() method uses
RecordEnumeration to store all records. After we

625

filtered out all records with rs.get Record(rec_id)
method, Byte array of each Student Record is
divided by the field value.
When we have many records, searching all data
at random requires squeezing all records, and thus
a lot of cost and time.

3.2.3 Query searching the students who took3.2.3 Query searching the students who took3.2.3 Query searching the students who took3.2.3 Query searching the students who took
course after particular time pointcourse after particular time pointcourse after particular time pointcourse after particular time point

In this case, RecordFilter interface has only one
method, Public Boolean matches(byte[] candidate)
method, and is useful for using a criterion about
record selection.

import javax.microedition.rms.*;

public class StudentFilter implements RecordFilter

private long cutoff;

public StudentFilter(long_cutoff) {

cutoff=_cutoff;

}

public boolean matches(byte[] candidate)

Student app = new Student();

app.init_app(candidate);

if(app.getTime()>cutoff) {

return true;

}

else {

return false;

}

}

}

3.2.4 Query aligning students according to the3.2.4 Query aligning students according to the3.2.4 Query aligning students according to the3.2.4 Query aligning students according to the
time of courses takentime of courses takentime of courses takentime of courses taken

For this purpose, we can use RecordComparator
interface as follows.

import javax.microedition.rms.*;

public class StudentComparator implements RecordComparator {

public int compare(byte[] rec1, byte[] rec2) {

Student app1 = new Student();

app1.init_app(rec1);

Student app2 = new Student();

app2.init_app(rec2);

if(app1.getTime()==app2.getTime()) {

return RecordComparator.EQUIVALENT;

}

else if(app1.getTime()<app2.getTime()) {

return RecordComparator.PRECEDES;

}

Else {

Return RecordComparator.FOLLOWS;

}

}

}

Especially, RecordComparator interface could more
easily align records in a table.
Compare(byte[] rec1, byte[] rec2) method is
manipulated by three constants: PRECEDES,
FOLLOWS, EQUIVALENT. If rec1 precedes (i.e.,
is smaller than) rec2,
RecordComparator.PRECEDES is returned (i.e.,
produced). In the reverse case,
RecordsComparator.FOLLOWS is returned. If rec1
equals to rec2, Records.EQUIVALENT is returned.

4. Conclusion4. Conclusion4. Conclusion4. Conclusion

The database query optimization design has
significantly influenced database performance.
Therefore, the query optimization design issue has
been studied continuously over time and is
regarded as a critical issue.
The mobile database is expected to yield a great
benefit in the time when we all want to access
desired information at any time anywhere[3].
Recognizing the importance of the database
query optimization design methods, we
implemented mobile database with mobile program
(J2ME) which is a useful database procedures.
Using our suggested embodiment of mobile
database, users are expected to query their
desired information with a personalized device,
such as naptop computer, PDA and mobile phone.
If these mobile devices are connected to the
database of a user's organization, he can make a
decision on a timely basis. In achieving this
objective, we should consider not only mobility of
mobile devices but also low integrity of mobile
transaction.
In short, we constructed a database table with
mobile program (J2ME) and illustrated selection

626

and alignment query methods satisfying certain
criteria. We hope these query methods of mobile
program would enable mobile database to be
utilized a lot more usefully and efficiently as
database advances in the future. We must
conduct continuous research on mobile database
needs to meet personal desires.

ReferencesReferencesReferencesReferences

[1] Back, H., Ku, K., and Kim, Y.(2001). "A
Mobile Transaction Model Supporting
Location-Dependent Query in Mobile Computing
Environment," Database Research, Vol. 17 (3).

[2] Budiarto, S. N., and Tsukamoto, M.(2002).
"Data Management Issues in Mobile and
Peer-to-peer Environments," Data & Knowledge
Engineering Vol 41. pp.183-204.

[3] Choi, M. and Kim, Y.(2001). "Mobile Database
Summary and Research Trends," Database
Research, Vol.17 (3).
[4] Helal, A., and Eich, M.(1995). "Supporting
Mobile Transaction Processing in Database
Systems," TR-CSE-95-003, Technical Report,
University of Texas.

[5] Eric, J.L. L., and Yung-Yuan, C.(2004).
"Design and Implementation of a Mobile
Database for Java Phones," Computer Standards
& Interface, Vol.26, pp.401-410.
[6] Jung, D.H.(1994). "A Study on the
Implementation of Expert System for Database
Performance Tuning," GSMIS Essay, Hankuk
University of Foreign Studies.

[7] Kuramitsu, K., and Ken, S.(2001). "Towards
Ubiquitous Database in Mobile Commerce,"
Proceedings of the 2nd ACM international
workshop on Data engineering for wireless and
mobile access.

[8] Lee, J.W.(2001). "mPowerAgent," Database
Research, Vol.17(3).
[9] Lee, S,H.(2001). Database system, Jungik
Publishing.

[10] Kottkamp, H.E., and Olaf, Z.(1998).
"Location-Aware Query Processing in Mobile
Database Systems," Proceedings of the 1998
ACM symposium on Applied Computing.

[11] Marsh, B., Douglis, F., and Caceres,R.(1993).
"System Issues in Mobile Computing,"
TR-50-93, Technical Report, MITL.

[12] Yang, J.M..(2003). "Design and
Implementation of a WAP Based Grade Inquiry
System," GSEUCATION Essay, Hankuk
University of Foreign Studies.
[13] Yu, F., and Jun, Z.(2001). Wireless Java
Programming with J2ME, SAMS Publishing.

627

