한국정보과학회:학술대회논문집 (Proceedings of the Korean Information Science Society Conference)
- 한국정보과학회 2008년도 한국컴퓨터종합학술대회논문집 Vol.35 No.1 (B)
- /
- Pages.240-245
- /
- 2008
- /
- 1598-5164(pISSN)
다광원 문제를 위한 광원 기여도 기반의 중요도 샘플링
Light Contribution Based Importance Sampling for the Many-Light Problem
- Kim, Hyo-Won (Department of Media, Soongsil University) ;
- Ki, Hyun-Woo (SK Innoace) ;
- Oh, Kyoung-Su (Department of Media, Soongsil University)
- 발행 : 2008.06.30
초록
컴퓨터 그래픽스에서 많은 광원들을 포함하는 장면을 사실적으로 렌더링하기 위해서는, 많은 양의 조명 계산을 수행해야 한다. 다수의 광원들로부터 빠르게 조명 계산을 하기 위해 많이 사용되는 기법 중에 몬테 카를로(Monte Carlo) 기법이 있다. 본 논문은 이러한 몬테 카를로(Monte Carlo) 기법을 기반으로, 다수의 광원들을 효과적으로 샘플링 할 수 있는 새로운 중요도 샘플링 기법을 제안한다. 제안된 기법의 두 가지 핵심 아이디어는 첫째, 장면 내에 다수의 광원이 존재하여도 어떤 특정 지역에 많은 영향을 주는 광원은 일부인 경우가 많다는 점이고 두 번째는 공간 일관성(spatial coherence)이 낮거나 그림자 경계 지역에 위치한 픽셀들은 영향을 받는 주요 광원이 서로 다르다는 점이다. 제안된 기법은 이러한 관찰에 착안하여 특정 지역에 광원이 기여하는 정도를 평가하고 이에 비례하게 확률 밀도 함수(PDF: Probability Density Function)를 결정하는 방법을 제안한다. 이를 위하여 이미지 공간상에서 픽셀들을 클러스터링(clustering)하고 클러스터 구조를 기반으로 대표 샘플을 선정한다. 선정된 대표 샘플들로부터 광원들의 기여도를 평가하고 이를 바탕으로 클러스터 단위의 확률 밀도 함수를 결정하여 최종 렌더링을 수행한다. 본 논문이 제안하는 샘플링 기법을 적용했을 때 전통적인 샘플링 방식과 비교하여 같은 샘플링 개수에서 노이즈(noise)가 적게 발생하는 좋은 화질을 얻을 수 있었다. 제안된 기법은 다수의 조명과 다양한 재질, 복잡한 가려짐이 존재하는 장면을 효과적으로 표현할 수 있다.
키워드