Naive Bayes Learner for Propositionalized Attribute Taxonomy

명제화된 어트리뷰트 택소노미를 이용하는 나이브 베이스 학습 알고리즘

  • Published : 2008.10.31

Abstract

We consider the problem of exploiting a taxonomy of propositionalized attributes in order to learn compact and robust classifiers. We introduce Propositionalized Attribute Taxonomy guided Naive Bayes Learner (PAT-NBL), an inductive learning algorithm that exploits a taxonomy of propositionalized attributes as prior knowledge to generate compact and accurate classifiers. PAT-NBL uses top-down and bottom-up search to find a locally optimal cut that corresponds to the instance space from propositionalized attribute taxonomy and data. Our experimental results on University of California-Irvine (UCI) repository data sets show that the proposed algorithm can generate a classifier that is sometimes comparably compact and accurate to those produced by standard Naive Bayes learners.

본 논문에서는 명제화된 어트리뷰트 택소노미를 이용하여 간결하고 강건한 분류기를 생성하는 문제를 고려한다. 이 문제를 해결하기 위해 명제화된 어트리뷰트 택소노미(Propositionalized Attribute Taxonomy)를 이용하는 나이브 베이스 학습 알고리즘(Naive Bayes Learner)인 PAT-NBL을 소개한다. PAT-NBL은 명제화 된 어트리뷰트들의 택소노미를 선험 지식으로 이용하여 간결하고 정확한 분류기를 귀납적으로 학습하는 알고리즘이다. PAT-NBL은 주어진 택소노미에서 지역적으로 최적의 컷(cut)을 찾아내기 위해 하향식 탐색과 상향식 탐색을 사용한다. 찾아낸 최적의 컷은 명제화 된 어트리뷰트 택소노미와 데이터로부터 그에 상응하는 인스턴스 공간(instance space)을 구성할 수 있게 해준다. University of California-Irvine (UCI) 저장소의 기계학습 벤치마크 데이터에 대한 실험 결과를 보면, 제안된 알고리즘이 표준적인 나이브 베이스 학습 알고리즘에 의해 만들어진 분류기들과 비교해 볼 때, 가끔은 보다 간결하고 더 정확한 분류기를 생성해 낸다는 사실을 알 수 있었다.

Keywords