Abstract
We investigated the effects of intermittent hydrostatic pressure with various duration of resting period on changes in calcium ($Ca^{2+}$) concentration and adhesive forces of cells on substrates. The quantitive adhesive forces of cells were measured under various resting periods. When the pressure applied to the cells, the concentration of $Ca^{2+}$ increased. Under intermittent hydrostatic pressure, the concentration of $Ca^{2+}$ was maintained under a resting period of 15 min, while it was not decreased with other resting periods of less than 15 min. With a resting period of 15 min, the magnitudes of adhesive forces were significantly increase. In addition, the adhesive forces were measured with and without $Ca^{2+}$ chelating agents to evaluate the effect of $Ca^{2+}$ on cell adhesiveness. When $Ca^{2+}$ ions were chelated, the adhesive forces dramatically decreased, even under intermittent hydrostatic pressure. We conclude that $Ca^{2+}$ plays an crucial role in modulating the adhesive forces of cells, and that the concentration of $Ca^{2+}$ can be increased by intermittent hydrostatic stimuli.