DTY 가공에 의한 Cotton-like yarn의 물성변화

박명수

경일대학교 섬유패션학과

1. 서 론

Polyester를 이용한 합성섬유의 천연 섬유화 기술은 다양하게 발전되어 Silk화는 어느 정도 진행이 되어 왔으나 Cotton-like화는 아직까지 그 기술이 일반화가 되지 못하고 있다.

폴리에스테르섬유로 Cotton-like화 기술은 모우 가공사 기술로 대별되는데 포리에스테르 필라멘트 사를 적당한 방법으로 접속시킨 후 각각의 구성 필라멘트를 랜덤한 위치에서 절단시켜 모우가공사를 형성 하는데 절단 방법에는 실을 찰과 시키는 방법과 필라멘트의 강력 차를 이용하여 공기분사로 절단하는 법, 그리고 POY를 랜덤 하게 연신시켜 저 배향 부분만 남고 가열 결정화된 부분을 공기분사로 절단하는 방법 등이 있는데 국내의 경우 DTY, TTY, ATY, TTY 등 의류용 가공사의 개발에는 기술과 노하우가 어느 정도 축적되어 있으나 모우 가공사의 경우는 아직 개발되고 있지는 않고 있는 실정이다.

따라서 본 연구에서는 Cotton의 기능과 특성을 좀 더 근접되도록 면의 장점을 활용하고 단점을 보완한 천연 면의 모우를 발현시킨 Cotton-like 소재를 개발함으로서, 바이오미메틱스한 새로운 PET Cotton-like조 제조기술 및 소재를 개발하여 이들의 물성변화를 연구 조사하여 실제 산업현장에 기초 자료를 제공하는데 목적이 있다.

2. 실험 및 방법

2.1 시험원사

원사는 DTY기를 이용한 모우사 개발을 위하여 Nip belt형 가연기로 Effect사로는 PET POY 77d/144f, Core 사로는 PET POY 85d/36f 으로 하여 110d/180f DTY cotton like yarn를 제조하였다.

Fig. 1은 제조된 110d/180f DTY cotton like yam의 표면사진이다. 여기서 보면 모우형성이 잘 일어나고 있음을 보여주고 있다.

Fig. 1. Photograph of cotton like yarn(110d/180f DTY).

www.ksdf.or.kr

2.2 가공사 물성 분석

3. 결과 및 고찰

3.1 수축률

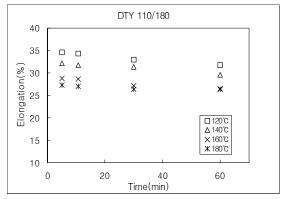
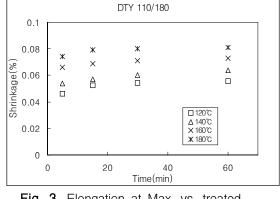



Fig. 2. Shrinkage vs. treated time at various temperature.

Fig. 3. Elongation at Max. vs. treated time at various temperature.

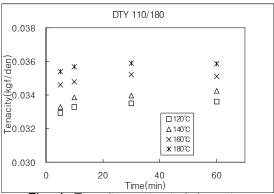
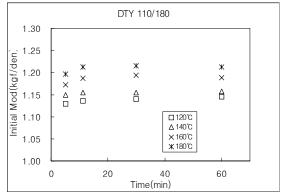



Fig. 4. Tenacity vs. treated time at various temperature.

Fig. 5 Initial modulus vs. treated time at various temperature.

4. 결 론

본 연구는 가연기로 Effect사로는 PET POY 77d/144f, Core사로는 PET POY 85d/36f 으로 하여 110d/180f DTY cotton like yarn를 제조하였고 제조된 모우사의 물성변화를 조사한 결과 다음과 같은 결론을 얻었다.

- 1) DTY기를 이용한 110d/180f DTY cotton like yam의 경우 열처리온도 120℃, 열처리 시간 30분에서는 수축률이 약 0.5%정도로 나타났고 열처리온도 180℃, 열처리 시간 30분에서는 수축률이 약 1%정도로 나타.나수축률이 매우 낮게 나타났다.
- 2) 열처리온도 120℃, 열처리 시간 30분에서는 절단변형률은 약 27%정도로 나타났고 열처리온도 180℃, 열처리 시간 30분에서는 수축률이 약 34%정도로 나타났음을 알 수 있다.
- 3) DTY기를 이용한 110d/180f DTY cotton like yam의 경우 열처리온도 120℃, 열처리 시간 30분에서는 절단 강도는 약 0.034kgf/d 정도로 나타났고 열처리온도 180℃, 열처리 시간 30분에서는 수축률이 약 0.034kgf/d 정도로 나타났다.
- 4) 초기탄성률은 열처리온도 180℃, 열처리 시간 30분에서는 초기탄성률이 약 1.22kgf/d 정도로 나타났다.
 - 본 연구는 "산학연협력 기업부설연구소 설치 지원사업"으로 연구되어진 것입니다. 지원에 감사드립니다. -

96 _____www.ksdf.or.kr