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1. Introduction

Inferring genetic regulatory networks from time course gene expression data has been of general interest. 

To this aim, many mathematical models have been employed such as dynamic Bayesian networks, Boolean 

networks, system of linear equations, and so on [1].

One major challenge with the problem is that most time course data have only a small number of data 

points which makes it difficult to monitor the full dynamics of the gene expression process. In this regard, 

system of linear equations has been most widely used, because they are relatively simple and are easily 

learned from short time-course expression data.

To cope with the dimensionality problem in linear models, several algorithms or techniques have been applied 

such as interpolation between time points [2], subset selection for multiple linear regression [3], and singular 

value decomposition (SVD) [4]. Subset selection [5] is a typical way to deal with the dimensionality problem, 

but easily causes over-fitting of the data because most of the time-series data have a small number of data points 

[6]. SVD is a useful alternative that robustly captures the network features even for a small number of data 

points. However, prediction by SVD fluctuates largely depending on the number of principal components chosen. 

One crucial problem in these methods that has easily been overlooked is that we cannot estimate the 

parameters of the model exactly from sparsely sampled short time-course data. Recently, a new system 

identification technique what the author called ensemble learning [7] aimed to reconstruct only the network 

structures (connections and their relative strengths) from time-course expression data. 

Ensemble learning amalgamates the ‘signs’ of estimated parameters from multiple likely models instead 

of using the single most likely model. The method does not estimate the exact parameters, but provides 

more accurate information on network structures. 

In this article, we review the ensemble method for learning the structure of regulatory networks and 

investigate the performance of its variation. We test the algorithms on the SOS system of E. coli.



www.msk.or.kr  151

The 48th MSK Annual Meeting and 2008 International Symposium on Microbiology

2. System and Methods

Here, we briefly describe the ensemble learning method and its variation. See [7] for a detailed 

description of the method.

2.1 Model Description

Suppose we have m  time-series measurements of the mRNA levels of n  genes. Let ig  be the ith 

gene or its expression level, and k  be the maximum number of regulators for each target gene. We only 

have the restriction on the number of measurements that km ≥ . 

We model the regulatory networks by a system of linear differential equations as follows: 
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where we call jg  in the right hand side of the equation regulator of ig  and the coefficient ijλ , regulating 

factor (r-factor in short). If 0>ijλ , we interpret that jg  activates ig , and if 0<ijλ , jg  represses ig . We 

assume regulatory networks are very sparse so that we set most of the r-factors ijλ  to be zero. In the 

vector form, the system reads
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where G = (g1, K, gn)T, njiij ≤≤=Λ ,1][λ , and Γ = (γ1,K,γn)T. We call Λ= [R ]Γ  the regulation matrix. The 

system (1) is approximated by the difference equations as follows:

(2) ),())(()( jjjj tttGtG Ε+∆Γ+•Λ=∆   1,...,0 −= mj ,

where ),()()( 1 jjj tGtGtG −=∆ + jjj ttt −=∆ +1  and ))(),...(()( 1 jnj tetet =Ε  represents error. We will estimate the 

parameters in (2) from discretely observed data.

2.2 Algorithms

ssLMS: subset selection for Least Mean Square error

The least mean square error estimation is the most popularly used method for recovering the linear 

(difference) equations, but the number of variables (regulators) should not exceed that of data points. Thus, 

we search for a subset of variables that minimizes the LMS error under the assumption of the network 
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sparseness. 

Let iR  be the ith row of R . For our localized algorithm, we consider a fixed gene ig  and the ith 

equation of (2)
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g  in iG  be the self regulator ig  and  (i)
ri
λ be its r-factor. iG  should include the self 

regulator ig  to represent the auto-regulation.

Calculation of r-factors for known regulators In this Subsection, we assume that we know all of its 

regulators )()(
1 ,..., i

r
i

i
gg  , but not their r-factors. By assuming the same amount of error at each time step, 

we constitute the least mean square error from (3) as follows:
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By differentiating (4) with respect to the row vector iC , we obtain the optimal estimates of r-factors 

iĈ  that minimizes (4). Now, we search for non-zero r-factors using subset selection in the next step.

Searching for regulators To identify the key regulators, we exhaustively search the possible combinations 

of regulators for one that has the smallest LMS estimate (4). From the assumption of network sparseness, 

it is assumed that 4≤k . 

LEARNe: Ensemble algorithm 

Step 1. For each fixed target gene ig , we calculate 2ˆiε  (4) for every possible combination of k  

regulators: If the number of gene is n, the number of possible combinations of regulators is kn C  taking 

into account the drift term and the self regulator.

Step 2. Among the kn C  number of 2ˆiε ’s, we take the smaller (more likely) µ % of the estimates: Each 

estimate provides a model (a combination of regulators and corresponding r-factors) for regulating ig . 

Step 3. Set the ‘voting’ regulation matrix Θ of size )1( +× nn  initialized with zero elements. For each 

of the µ % likely models, we accumulate signs (votes) of the corresponding r-factors on Θ .

Step 4. Repeat Step 1~3 for all i’s to complete Θ .
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(A) (B)
Fig. 1. ROC curves for (a) 10 and (b) 50 data points.

See [7] on how to choose the optimal parameter µ . 

LEARNw: A variation of LEARNe

Only the Step 3 is replaced by Step 3’.

Step 3’. Set the ‘voting’ regulation matrix Θ of size )1( +× nn  initialized with zero elements. For each 

of the µ % likely models, we accumulate the corresponding r-factors themselves on Θ .

3. Test of the algorithms

Here, we compare the performances of three algorithms, ssLMS, LEARNe, LEARNw and SVD by simulation 

tests. We generated time-series data from randomly constructed stable linear systems that incorporate both 

systemic (biological) and experimental noise. From the noisy data, we reconstructed the underlying networks 

using each of the four algorithms. We repeated the test for 40 randomly generated stable systems in each 

setting and we compared AUC for each algorithm. See [7] for a detailed explanation for the measure 

of performance. 

(A) (B)
Fig. 2. Average AUC for (a) five and (b) 30 data points.
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Fig. 3. ROC curves for SOS regulatory network of E. coli.

Typical performance plots (ROC) are shown in Fig. 1. LEARNe significantly improved the prediction 

power of the naïve subset selection method (ssLMS), and also outperformed SVD for ten or more number 

of data points. The average-case test results are shown in Fig. 2. We show ten dimensional cases, but 

similar patterns are observed for higher dimensional networks. Fig. 2A demonstrates why ensemble 

methods are required over the least square method (ssLMS). For this small number of data points, 
µ =100% worked best for both ensemble methods. For this small number of data points (five), 

accumulating the estimated coefficients (LEARNw) performed a little better than ssLMS. However, 

accumulating only the signs of the estimated coefficients much better identified the network structure 

(LEARNe). This implies the individual models used for the ensemble learning do not provide reliable 

estimates for small number of data points. On the other hand, when we used 30 data points, LEARNw 

outperformed LEARNe. For five data points, SVD performed better than ensemble methods, but for thirty 

data points, both the ensemble methods outperformed SVD (data not shown). See also [7] for further 

test results.

Lastly, we tested the methods on a time series microarray data set to reconstruct the SOS regulatory 

network of E. coli. We used the time series data used Bansal et al. (2006). With this real data set, 

accumulating the signs of coefficients (LEARNe) still performed clearly better than accumulating the 

coefficients themselves (LEARNw) for a small number of data points.
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