User Reputation Evaluation Using Co-occurrence Feature and Collective Intelligence

동시출현 자질과 집단 지성을 이용한 지식검색 문서 사용자 명성 평가

  • Lee, Hyun-Woo (Dept. of Computer Engineering, Changwon National University) ;
  • Han, Yo-Sub (Korea Institute of Science and Technology(KIST)) ;
  • Kim, LaeHyun (Korea Institute of Science and Technology(KIST)) ;
  • Cha, Jeung-Won (Dept. of Computer Engineering, Changwon National University)
  • Published : 2008.10.10

Abstract

많은 사용자들의 참여로 구축된 집단 지성을 이용한 지식 검색 서비스에서 사용자가 원하는 답변을 빨리 찾고자 하는 요구가 증가하고 있다. 기존의 연구에서 조회 수, 추천 수, 답변 수와 같은 비텍스트 정보가 답변을 평가하는데 좋은 자질임이 증명되었고, 신뢰도를 추정할 수 있는 여러 종류의 단어 사전을 이용하여 답변의 좋고 나쁨을 평가할 수 있는 연구도 진행되었다. 하지만, 조회 수, 추천 수, 답변 수와 같은 비텍스트 정보는 사용자 조작이 간단하여 지속적으로 관리를 해야 하며, 신뢰도를 추정할 수 있는 단어는 지속적으로 보강되어야 한다. 본 논문에서는 이러한 문제점을 해결하고자 동시출현 자질을 이용한 질문과 답변의 유사성을 활용하여 집단 지성에서 사용자의 활동을 분석하여 사용자의 명성을 평가하는 방법을 제안한다. 사용자의 명성을 계산할 수 있다면 조회 수와 추천 수가 많지 않은 답변의 신뢰도도 비교적 정확하게 추정할 수 있다. 이를 위해 우리는 PageRank 알고리즘을 수정하여 사용자 명성을 계산한다. 네이버 지식iN의 문서로 실험한 결과, 기존 정답 선택률을 보완할 수 있는 결과를 보였다.

Keywords