Effect of Lowering the Oxygen Partial Pressure on a J_c Enhancement of Ce-doped YBCO Films Prepared by MOCVD

Y. H. Kim^{a,*}, B.-H. Jun^b, C.-J. Kim^b, T. H. Sung^c, Y. H. Han^c, S. C. Han^c, K. S. No^a

^a Korea Advanced Institute of Science and Technology, Daejeon, Korea ^b Korea Atomic Energy Research Institute, Daejeon, Korea

Korea Alomic Energy Research Institute, Daejeon, Korea

^c Korea Electric Power Research Institute, Daejeon, Korea

Since the oxygen partial pressure is important parameter for the *in-situ* deposition of pure YBa₂Cu₃O_{7-x} (YBCO) films, many researchers have attempted to investigate the influence of the oxygen partial pressure on a critical current density (J_c) enhancement of the films. By lowering the oxygen partial pressure an enhanced c-axis orientation and J_c of the films have been reported. In this work, we investigated whether a Ce-doped YBCO film showed an improved crystallinity and J_c value by lowering the oxygen partial pressure. Effect of the oxygen partial pressure was examined from the viewpoint of the ordering along the c-axis and the grain growth. Ce-doped YBCO films were fabricated on a SrTiO₃ (STO) single crystal at the oxygen partial pressures of 10.0 Torr, 5.0 Torr, and 2.5 Torr using a metal organic chemical vapor deposition (MOCVD) method. A single liquid source (Y(tmhd)₃ : Ba(tmhd)₂ : Cu(tmhd)₂ = 1 : 2.2 : 3.1) with various amounts of Ce(tmhd)₄ (up to 10 wt%) was used as a precursor. From the texture analysis performed by X-ray diffraction (XRD), the degree of crystallinity of the films was increased and the J_c of the films was improved as the oxygen partial pressure was decreased. The highest J_c of 1.66 MA/cm₂ at 77K and a self-field was obtained on the film at oxygen partial pressure of 2.5 Torr.

Keywords : YBCO, MOCVD, oxygen partial pressure, Ce doping