Effect of Ball-Milling on the Superconducting Properties

of MgB₂ Doped with C and C-Based Compound

Jung-Ho Ahn^{a,*}, Minkyu Jang^a, Sangjun Oh^b

^a Andong National University, Andong, Korea ^b National Fusion Research Institute, Daejeon, Korea

Magnesium diboride (MgB₂) is an attractive superconducting material for its potential applications in the temperature range 20±30K. However, the critical current density (J_c) drops rapidly with increasing magnetic field strength. To minimize this problem, several methods have been employed such as the introduction of structural defects, grain refinement and doping with exotic materials (e.g. SiC or C). High energy ball-milling is an effective method both to introduce lattice defects and to refine grain size. In the present, we have examined the effect of ball-milling on the superconducting properties of MgB₂ doped with C. The doping was carried out by dry or wet ball-milling of C or diethylenetriamine (C₄H₁₃N₃) with MgB₂ powder. The latter compound (diethylenetriamine) whose chemical formula contains no oxygen was chosen to avoid an excess oxidation during doping. Furthermore, the compound is not toxic and relatively inexpensive. The ball-milled and doped MgB₂ powders were die-compacted and heat-treated at various temperatures in a Ar atmosphere. The superconducting transition temperature (T_c) of the doped MgB₂ was much higher than that of undoped MgB₂. The J_c enhancement was more pronounced at higher magnetic fields. The observed J_c improvement is attributed to a combined effect of C-doping and high-energy ball-milling.

Keywords : MgB₂ superconductor, Carbon doping, Ball milling