# The Effect of Multi-coating on Critical Properties of YBCO Films Prepared by TFA-MOD 

Seok Hern Jang ${ }^{a, *}$, Jun Hyung $\operatorname{Lim}^{a}$, Jun Hyuk Choi ${ }^{a}$, Jong Hyun Shim ${ }^{a}$, Jin Hyun Park ${ }^{a}$, Jinho Joo ${ }^{a}$, Chan-Joong Kim ${ }^{b}$<br>${ }^{a}$ School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Korea<br>${ }^{b}$ Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon, 305-353, Korea

We fabricated YBCO films on ( $00 l$ ) $\mathrm{LaAlO}_{3}$ single crystal prepared by metal organic deposition (MOD) method with multi-coating and evaluated the influences of film thickness and heat treatment conditions on phase formation, texture, and critical properties by microstructural observations. For the observation of microstructure of multi-coated YBCO films, a scanning electron microscopy (SEM, XL-30 ESEM, FEG) and high resolution transmission electron microscopy (HRTEM, JEOL-JEM2100F) with EDS system were used and the regional phase formation and texture were characterized from X-ray diffraction and pole-figure.

The microstructure and resultant critical current $\left(I_{C}\right)$ and critical current density $\left(J_{C}\right)$ varied remarkably with film thickness: The $I_{C}$ value increased from 39 to $160 \mathrm{~A} / \mathrm{cm}$-width as the number of coatings increased from one to four, while the corresponding $J_{C}$ was measured to be in the range of $0.84-1.21 \mathrm{MA} / \mathrm{cm}^{2}$. Both the $I_{C}$ and $J_{C}$ decreased when an additional coating was applied due to microstructural degradation, indicating that the optimum thickness is in the range of 1.1-1.8 $\mu \mathrm{m}$. As the results of microstructural observation, it was considered that some amorphous phase, a-axis YBCO grain and secondary phases such as BaCuOx and CuO in layer interfaces were the possible causes for the decrease in the $I_{C}$ and $J_{C}$ for the thicker films.

Keywords: critical current, multi-coating, MOD method, YBCO films

## Acknowledgement

This work was supported by Grant No.RTI04-03-04 from the Regional Technology Innovation Program of the Ministry of Commerce, Industry and Energy (MOCIE)

