Superconducting Properties of MgB₂ Bulk Formed by MgB₄ + Mg Mixtures

K. S. Tan^{*}, B-H. Jun, C-J. Kim

Neutron Science Division, Korea Atomic Energy Research Institute (KAERI), Daejeon, Korea

One of the most common techniques to fabricate MgB₂ superconductor is by an *in situ* method where an elemental Mg + 2B mixture is used and reacted *in situ* during a heat treatment to form MgB₂ phase. Although relatively good superconducting properties can be achieved, the density of the MgB₂ sample after its formation is rather low with a particularly porous microstructure. This is due to a reduction in volume of the MgB₂ formation from its elemental Mg and B phases and the volatility of Mg powder above its melting point of 650°C. Other alternative precursors with the aim of reducing the amount of pure Mg powder in the starting material, such as MgH₂, Mg₂Cu and Mg₄Ag were also used by other groups in an attempt to further improve the MgB₂ properties. In this study, the superconducting properties of MgB₂ bulk formed by MgB₄ + Mg mixtures were investigated. MgB₄ powder was synthesized at 1000°C for 5 hours in flowing Ar gas. The density of the MgB₂ bulk formed in this method is higher than the conventional MgB₂ bulk formed by Mg + 2B. However, lower *J*_c values were observed especially at low fields due to the high amount of MgO and MgB₄ present, thus decreasing the effective cross sectional area and the connectivity of the samples. Although an enhancement of *H*_{c2}(T) was observed, the result showed no significant improvement in the *H*_{irr}(T).

Keywords: MgB₂, MgB₄, precursor powder, critical current density

Acknowledgement

This research was supported by a grant (R-2006-1-248) from Electric Power Industry Technology Evaluation & Planning (ETEP), Republic of Korea.