Fabrication of MgB₂ Thick Films on Various Buffer Layers by Using Hybrid Physical-chemical Vapor Deposition Method.

S. W. Park^{*}, W. K. SeingLee, S. G. Jung, W. N. Kang

Bk21 Physics Division and Department of Physics, Sungkyunkwan University, Suwon, 440-746, Korea

We have fabricated MgB₂ thick films on *c*-cut Al₂O₃ substrates with various buffer layers of Ni, Ti, and SiC by using hybrid physical-chemical vapor deposition (HPCVD). Firstly, we have deposited Ni, Ti, and SiC on Al₂O₃ substrates for the growth of buffer layer by using pulsed laser deposition technique. The deposition time of buffer layers was 1, 2, 5, and 10min, respectively. And then the MgB₂ films have grown by HPCVD system at the low temperature of 480 °C for 10 min. The as-grown MgB₂ films showed superconducting transition temperatures of ~40 K with transition width of 0.2 ~ 0.6 K and the average MgB₂ film thickness was about 3.8 μ m. The X-ray diffraction patterns indicated that the MgB₂ thick films had a highly c-axis-oriented crystal structure normal to the buffer layer substrate surface. The average grain size of buffered samples shown 400 ~ 700 nm in diameter, it was observed by a scanning electron microscope. We have found a significant enhancement of the critical current density (J_c) for MgB₂ films grown on buffer layered substrates, indicating that additional buffer layers were provided possible pinning sites by chemical doping in MgB₂ films. The J_c of MgB₂ films grown on Ni, SiC buffered substrates showed best J_c performance of low and high field region, respectively.

Keywords: MgB₂, HPCVD, buffer, buffer layer, Ni, Ti, SiC