Comparative Study of Impurity Scattering on Al-and C-doped MgB₂ Single Crstals

B. Kang^{a, *}, M.-S. Park^b, H.-J. Kim^b, S.-I. Lee^b, Y. Jo^c and M.-H. Jung^c ^a BK21 physics program and department of Physics, Chungbuk National University, Cheongju, Korea

^b National Creative Research Institute Center for Superconductivity and Department of Physics, Pohang

University of Science and Technology, Pohang, Korea

^c Quantum Materials Research Laboratory, Korea Basic Science Institute, Daejeon, Korea

We investigated the temperature dependence of the upper critical fields $H_{c2}(T)$ of Al- and C-substituted MgB₂ single crystals along the two main crystallographic directions. Despite similar suppression of T_c with the Al and C concentrations, the effects of the two substitutions on $H_{c2}(T)$ are found to be different. $H_{c2}(T)$ of the Al- and the C-doped MgB₂ can be well explained within the dirty-limit two-gap theory though $H_{c2}(0)$ of two substitutions show an opposite behavior, indicating very weak interband scattering. For the C-doping case, the ratio of in-plane electron diffusivities D_{σ}/D_{π} is much smaller than that for the Al-doping case indicating that C-doping enhances impurity scattering mainly in the σ bands as anticipated. The ratio of H_{c2} along the two directions, $\gamma_{\rm H}(T)$ (= H_{c2}^{ab}/H_{c2}^{c} systematically decreases with both Al and C dopings, however, $\gamma_{\rm H}({\rm T})$ for the C-doped shows a stronger temperature dependence than that for the Al-doped MgB₂ crystals.

Keywords : MgB₂ single crystals, Al doping, C doping, impurity scattering