Current Redistribution of a Coated Conductor in a Perpendicular Magnetic Field with Transport Current

J. Yoo ${ }^{\text {a, }}{ }^{*}$, K. Kwak ${ }^{\text {a }}$, S. M. Lee ${ }^{\text {a }}$, Y. Jung ${ }^{\text {a }}$, J. Rhee ${ }^{\text {a }}$, D. Youm ${ }^{\text {a }}$, S. S. Oh ${ }^{\text {b }}$, H. S. $\mathrm{Ha}^{\text {b }}$, H. S. Kim ${ }^{\text {b }}$
${ }^{\text {a }}$ Physics Department, Korea Advance Institute of Science and Technology, Deajeon, Korea
${ }^{\mathrm{b}}$ Superconducting Materials Group, Korea Electrotechnology Research Institute, Changwon, Korea

The current redistribution of a superconducting tape in a perpendicular magnetic field $\left(H_{a}\right)$ was investigated with increasing transport current $\left(I_{a}\right)$ up to 90% of the field dependent critical current $\left(I_{c}\right)$. We measured the field distribution near the sample surface across the tape width (2 w) using a scanning Hall probe method. Applying the inversion to the measured field distribution, we obtained the current distribution across the tape width. We visualized that the initial field-like distribution was changed into current-like distribution with increasing the transport current near the line $I_{a} / I_{c}=\tanh \left(H_{a} / H_{c}\right)$ in where $H_{c}=I_{c} /(2 \pi \mathrm{w})$. In addition, Lorenz force applied on the coated conductor was estimated employing the current profile and magnetic induction calculated under the conditions.

Keywords : current profile, coated conductor, Lorenz foce

