Effects of Proton Irradiation on the Microwave Properties of $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-\delta}$ Films and MgB_{2} Films

Sang Young Lee ${ }^{\text {a,* }}$, J. H. Lee ${ }^{\text {a }}$, Ho Sang Jung ${ }^{\text {a }}$, A. Y. Choi ${ }^{\text {a }}$, Y. H. Cho ${ }^{\text {a }}$, W. I. Yang ${ }^{\text {a }}$, Brian H. Moeckly ${ }^{\text {b }}$ and John H. Claassen ${ }^{\mathrm{c}}$
${ }^{a}$ Konkuk University, Seoul, Korea
${ }^{b}$ Superconductor Technology, Incorporated, Santa Barbara, U.S.A.
${ }^{c}$ Naval Research Laboratory, Washington DC, U.S.A.

Proton irradiations on superconducting bulk materials and thin films have enabled to enhance the critical current density and the upper critical field in the mixed state due to increased vortex pinning. We investigated the microwave surface resistance $\left(R_{s}\right)$ of proton-irradiated $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-\delta}(\mathrm{YBCO})$ films grown on $\mathrm{LaAlO}_{3}(\mathrm{LAO})$ and MgB_{2} films grown on r-cut sapphire in the Meissner state. The intrinsic R_{s} was measured at $\sim 8.5 \mathrm{GHz}$ at temperatures below the critical temperature with the effects of the finite film thickness taken into account. Significant reduction in the R_{s} of YBCO films were observed at temperatures of 40 K to 70 K when the films were irradiated with 20 MeV proton for 10 minutes to the fluence of $0.47 \times 10^{15} \mathrm{ions} / \mathrm{cm}^{2}$ with the value of 100 $\mu \Omega$ of the proton-irradiated one at 60 K appearing significantly lower than the corresponding one of $140 \mu \Omega$ before irradiation. For MgB_{2} films, reduced T_{C} was observed along with reduced intrinsic R_{S} at temperatures below $24-26 \mathrm{~K}$ after proton irradiation to the fluence of 4.8×10^{15} protons $/ \mathrm{cm}^{2}$. An increase of $9-14 \%$ in the π-band gap energy was observed for proton-irradiated MgB_{2} films, which are attributable to enhanced interband scattering between the σ-band and the π-band caused by increased disorder. Meanwhile, the reduction in the R_{S} of proton-irradiated YBCO films at $40-70 \mathrm{~K}$ was attributed to enhanced impurity scattering rate of $\sim 2 \times 10^{12} / \mathrm{s}$ compared to a value of $\sim 7.6 \times 10^{11} / \mathrm{s}$ for unirradiated YBCO .

