INVITED

Improvement of Critical Current Densities of MgB₂ Tapes and Wires

H. Kumakura^{a,*}, A. Matsumoto^a, H. Kitaguchi^a, J.M. Hur^{a,b}, K. Kimura^b, H. Wada^b, K. Togano^a

^a National Institute for Materials Science, Tsukuba, Japan ^b University of Tokyo, Kashiwa, Japan

Impurity addition is an effective method to improve J_c of MgB₂ wires and tapes, and many impurity additions are now being tried out in the world. Among many kinds of impurities, additions of carbon compounds such as nano-SiC and hydrocarbon are particularly effective. We found that the additions of ethyltoluene(C_9H_{12}) to the starting powder of *in situ* processed Powder-In-Tube(PIT) MgB₂/Fe tapes is more effective in enhancing J_c value than other hydrocarbon additions in spite of smaller amount of carbon substitution for boron site. The slope of J_c -B curve of ethyltoluene-added tape is almost equal to that of pure MgB₂ tape. These results suggest that the dominant mechanism of J_c enhancement for ethyltoluene-added tape is different from carbon substitution for boron. The analysis by the Rowell's method indicates that the connectivity of MgB_2 is improved by the ethyltoluene addition. The addition of both ethyltoluene and SiC nano powder to the starting powder is much more effective in increasing J_c values. This is because both mechanisms of J_c improvement--one comes from the addition of ethyltoluene, and the other comes from the carbon substitution for boron by the SiC addition--work together. The highest J_c values at 4.2K reached 32,000A/cm² in 10T and 14,000A/cm² in 12T for 10mol% ethyltoluene and 10mol%SiC-added tape. However, these J_c values are still below the practical level due to the low density of MgB₂ cores. Recently, we succeeded in the fabrication of MgB₂/Fe wires having high density MgB₂ core applying the internal Mg diffusion (IMD) process with pure Mg rod and pure B powder or nano-SiC added B powders. A pure Mg rod with a diameter of 2 mm was placed at the center of a Fe tube with an outer diameter of 6mm and inner diameter of 3.5 mm, and space between the Mg rod and the Fe tube was filled with B powder or B-SiC mixed powder. The composite was successfully cold worked into $0.8 \sim 1.2$ mm wire at room temperature without any breakage. The wires were heat treated at $650 \sim 800$ °C for $1 \sim 10$ hrs under Ar gas atmosphere. During the heat treatment, liquid Mg infiltrated into the B layer and reacted with B to form MgB₂. X-ray diffraction analysis indicated that the major phase in the reacted layer is MgB₂. SEM analysis of the heat treated wire clearly indicated that the density of MgB₂ layer in the wire was higher than that of a PIT processed wire. The J_c at 4.2K of the IMD-processed wire increased with decreasing the heat treatment temperature from 800 °C. Transport J_c values of the SiC added wire heat treated at 670°C reached 1.1 x 10⁵A/cm² in 8T and 43,000 A/cm² in 10T at 4.2K. These J_c values are much higher than those of usual PIT processed wires. These high J_c values can be attributed to the high density MgB₂ layer obtained by this diffusion method. Thus, the densification of MgB₂ layer is effective in enhancing J_c of MgB₂ wires.

Keywords: impurity addition, ethyltoluene, critical current density, diffusion method

Part of this work was supported by JSPS KAKENH (19560716).