IN IIA-2



## Recent Experimental Results of Iron-based Superconductor

## Eun-Mi Choi\*, Won Nam Kang

Korea BK21 Physics Division and Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea

Since the discovery of superconductivity in the high- $T_c$  cuprate, it has been established that the CuO<sub>2</sub> plane is essential for superconductivity. A  $T_c$  higher than 40 K has been obtained only in the cuprate superconductor. The highest reported value for non-cuprate is 39 K observed in MgB<sub>2</sub>. Recently, the reports of superconductivity in LnO<sub>1-x</sub>F<sub>x</sub>FeAs (Ln = lanthanide: La, Sm, Ce, Nd, Pr, and Gd) have attracted enormous attentions because these materials are the first non-copper oxide superconductors with  $T_c$ s exceeding 50 K. These compounds have a tetragonal structure consisting of alternating layers of quasi-two-dimensional puckered LnO and FeAs planes along the c-axis. By replacing O with F in the non-superconducting parent compound of LnOFeAs, the FeAs layers can be doped with electrons. These compounds result in the superconductor at a doping level of x  $\approx$  0.15  $\sim$  0.2 in LnO<sub>1-x</sub>F<sub>x</sub>FeAs. After discovering this superconductor, many research groups have reported on theoretical calculations and experimental results for fabrications of poly-crystals and single crystals, and investigations of physical properties to understand this superconductor. In this presentation, I will introduce the recent experimental results of Iron-based superconductors and discuss about future work.

Keywords: Iron-based superconductor