최적 빔포머를 이용한 고지향성 라우드스피커 어레이 Highly Directional Loudspeaker Array Using Optimal Beamformer

조완호† ·이정권*·Marinus M. Boone** Wan-Ho Cho, Jeong-Guon Ih and Marinus M. Boone

Key Words: 지향성 라우드스피커, 라우드스피커 어레이, 최적 빔포머

ABSTRACT

본 연구에서는 최적 빔포머 (optimal beamformer)를 이용하여, 높은 지향특성을 갖는 라우드스피커 어레이 를 구성하였다. 센서 어레이 시스템에 널리 적용되는 빔포밍 방법은 상반성 (reciprocity)의 원리에 의하여 라 우드스피커 시스템에도 적용이 가능하다. 음원의 개수 및 배치 간격과 같은 최적 빔포머의 설계 변수와 지향성 과의 관계를 살펴보고, 잡음 증폭을 억제하기 위해 적용되는 안정화 계수 (stability factor)도 유용한 설계 변 수로 활용하였다. 또한 라우드스피커 자체가 갖는 지향성과 반사와 산란 등을 고려하여 빔포머를 최적화하는 방법을 제안하였고, 이 방법을 통해 예측치와 실제 시스템과의 차이를 줄였다. 실행 예제로 실제 어레이 시스 템을 구성하고, 모의 실험과 실제 측정을 수행하여 성능을 확인하였다.

1. 서 론

지향성 라우드스피커는 그 다양한 적용 범위로 인하여 많은 연구자들에 의해 연구되어 왔다. 단일 음원의 경우에는 재생주파수의 파장과 진동판의 크 기의 비로 정의 되는 헬름홀쯔 수 (Helmholtz number) 및 그 형상에 의해 지향특성이 결정된다. 다수의 음원을 이용하는 경우에는, 음원간의 상대적 위치와 각음원의 신호를 제어하는 필터시스템에 의 해 결정된다. 그러나 많은 실제 문제에서 사용할 수 있는 공간 범위와 음원의 종류 및 수량이 제한되기 때문에, 필터 시스템을 목적에 맞게 설계하는 것이 지향성 제어의 핵심이라 할 수 있다.

지향성 제어에 관한 연구는 라우드스피커 분야뿐 만 아니라, 안테나나 마이크로폰과 같은 센서 어례 이 분야에서도 널리 연구되어 왔다. 그 중 대표적인 이론으로는 지연 합 빔포머 (delay and sum beamformer [1]), 자코비 어레이 (Jacobi array [2]), 그리고 최적 빔포머 (optimal beamformer [3, 4]) 등을 들 수 있다. 이러한 센서 어레이에 관한 이론들은 상반성(reciprocity) 원리에 의해 라우드스 피커 시스템에도 적용이 가능하다. 특히 최적 빔포 머의 경우, 문제가 수학적으로 잘 정의되어 있으며, 다른 방법보다 상대적으로 높은 지향성을 얻을 수 있다고 알려져 있다 [5]. 이런 점에서 볼 때, 최적 빔포머는 지향성 라우드스피커를 구성하는 데 유용 하게 사용 될 수 있다.

본 연구에서는 최적 빔포머를 이용하여 높은 지

향성을 갖는 라우드스피커 어레이 시스템을 구성하 고자 한다. 이를 위해 주요 설계 변수와 그 선정 과 정을 제안하고, 센서와 음원의 차이에서 발생하는 문제를 해결하기 위한 방법을 논의한다.

2. 기본 이론

2.1 어레이 시스템에 대한 기본 이론

어레이의 성능을 비교하기 위한 대표적인 지표로 지향성 (directivity)이 있다. 음원의 경우 지향성은 관심 방향으로 전달되는 음향 인텐시티와, 동일한 파워의 단극음원에서 한 방향으로 전달되는 인텐시 티의 비로 정의되며, 식으로 표현하면 아래와 같다 [6].

$$Q(\omega) = 2 / \int_{0}^{\pi} \Gamma^{2}(\theta) \sin \theta d\theta \,. \tag{1}$$

여기서 Γ는 각도에 따른 응답비를 의미하며, 이를 지향 패턴 (directivity pattern)이라고 한다. 센서 어 레이 관점에서는 다음과 같은 식으로 정의된다 [7].

$$Q(\omega) = \frac{\max_{\theta,\phi} \left\{ \mathbf{F}^H \mathbf{W}^* \mathbf{W}^H \mathbf{F} \right\}}{\mathbf{F}^H \mathbf{S}_{-\tau}^T \mathbf{F}} \,. \tag{2}$$

이때, * 는 켤레 복소수, ^H 는 복소 공액 전치 (Hermitian transpose) 연산자 이며, **F**(ω) 는 각 어 레이 요소에 적용되는 필터, **W**(ω) 는 상대적인 요소 간의 상대적 지연을 나타내는 벡터로, 아래 식과 같 이 주어진다.

$$\mathbf{F}(\omega) = \begin{bmatrix} F_1(\omega) & F_2(\omega) & \cdots & F_N(\omega) \end{bmatrix}^T, \quad (3)$$

$$\mathbf{W}(\omega) = \left[\Gamma_1 e^{\frac{j\omega d_1 \cos\theta}{c}} \Gamma_2 e^{\frac{j\omega d_2 \cos\theta}{c}} \cdots \Gamma_N e^{\frac{j\omega d_N \cos\theta}{c}}\right]^T. \quad (4)$$

S_{zz}(ω) 는 각 요소의 위치에 따른 상관 계수 행렬 (coherence matrix)로, 다음 식과 같이 주어진다.

[↑] 교신저자; KAIST 기계공학과 E-mail : rosa.chinensis@gmail.com Tel : (042) 869-5035, Fax : (042) 869-8220 * KAIST 기계공학과 ** Delft University of Technology

$$\boldsymbol{S}_{zz} = \left[\boldsymbol{S}_{mn} \right] = \frac{1}{4\pi} \int_0^{2\pi} \int_0^{\pi} \boldsymbol{W}_m \boldsymbol{W}_n^* \sin\theta d\theta d\phi \,. \tag{5}$$

만일 배경 잡음이 균일하고 방향성이 없다면 (uniform and isotropic), 상관 계수 행렬의 각 요소 는 다음과 같이 간단하게 표현된다.

$$S_{mn} = \frac{\sin[k(\boldsymbol{x}_m - \boldsymbol{x}_n)]}{k(\boldsymbol{x}_m - \boldsymbol{x}_n)},$$
(6)

여기서 k 는 음파의 파수 (wave number), x_m, x_n 은 m, n 번째 요소의 위치를 의미한다.

일반적으로 지향성은 로그를 취하여 데시벨 (dB) 단위로 나타낸 지향성 지표 (directivity index, DI) 로 사용된다.

또 다른 중요한 평가 지표로는 잡음 민감도 (noise sensitivity, NS)가 있다. 이는 신호와 상관관 계가 없는 잡음에 대한 증폭비를 말하며, 다음 식과 같이 표현된다 [7].

$$\Psi(\omega) = \frac{\mathbf{F}^{H}(\omega)\mathbf{F}(\omega)}{\mathbf{F}^{H}(\omega)\mathbf{W}^{*}(\omega)\mathbf{W}^{T}(\omega)\mathbf{F}(\omega)}.$$
 (7)

일반적으로 잡음민감도 역시 데시벨 단위로 사용 된 다.

대표적인 어레이 배치 형태는, 관심 방향과 음원 의 배치 방향이 수직인 폭 방향 (broadside) 어레이 와 관심 방향과 배치 방향이 일치하는 축 방향 (endfire) 어레이가 있다. 축 방향 어레이의 경우, *N* 개의 음원에 의해 얻을 수 있는 최대 지향성 지표는 폭방향 에러이의 2 배이며, 다음 식과 같이 주어진다 [8].

$$DI_{\max} = 20 \log N \,. \tag{8}$$

본 연구의 목표는 어레이 시스템의 지향성을 높이 는 것이므로, 축 방향 어레이 배치를 이용하였다. 그 림 1 은 축 방향 어레이 시스템의 배치와 좌표계, 그 리고 관련된 변수들을 보여주고 있다.

그림 1. 축방향(endfire) 어레이 시스템.

2.2 최적 빔포머

최적 빔포머는 아래와 같은 최적화 문제를 통하여 구해진다.

$$\min_{\mathbf{F}(\omega)} \mathbf{F}^{H}(\omega) \mathbf{S}_{zz}^{T}(\omega) \mathbf{F}(\omega)$$
⁽⁹⁾

subject to
$$\mathbf{F}^{T}(\boldsymbol{\omega})\mathbf{W}(\boldsymbol{\omega}) = 1$$

이 문제의 해는 라그랑지 방법 (Lagrange method) 을 통해 아래와 같이 구해진다 [7, 8].

$$\mathbf{F}_{optimal}^{T}(\boldsymbol{\omega}) = \frac{\mathbf{W}^{H}(\boldsymbol{\omega})\mathbf{S}_{zz}^{-1}(\boldsymbol{\omega})}{\mathbf{W}^{H}(\boldsymbol{\omega})\mathbf{S}_{zz}^{-1}(\boldsymbol{\omega})\mathbf{W}^{H}(\boldsymbol{\omega})}.$$
(10)

그러나 위의 해는 저주파수 대역에서의 높은 잡음 민감도로 인해 실제 상황에서는 적용하기 어렵다. 이 문제를 해결하기 위해 Gilbert 와 Morgan 은 안 정화 계수 (stability factor)를 포함하는, 아래와 같 은 해를 제안하였다 [4].

$$\mathbf{F}_{optimal,\beta}^{T} = \frac{\mathbf{W}^{H} \left(\mathbf{S}_{zz} + \beta \mathbf{I} \right)^{-1}}{\mathbf{W}^{H} \left(\mathbf{S}_{zz} + \beta \mathbf{I} \right)^{-1} \mathbf{W}^{H}} \cdot$$
(11)

3. 음원 어레이의 설계과정

3.1 설계변수의 선정

지향성과 관계된 음원 어레이의 설계 변수로는 음 원의 개수 (N), 음원의 간격 (d) 및 배치 방법, 그리 고 각 음원에 적용되는 제어 필터가 있다. 식 (11)으 로 주어진 최적 빔포머를 이용하는 경우, 다른 설계 인자가 정해지면 안정화 계수를 제외한 다른 인자들 도 정해지게 된다. 그러므로 안정화 계수는 독립된 설계 변수로 볼 수 있다.

사용할 음원의 개수는 식 (8)을 이용하여 정할 수 있다. 단 여기서 얻어지는 지향성 지수는 이상적인 최대값이며, 다른 변수의 선정과 주파수 대역에 따 라서 감소될 수 있으므로, 목표치에 대해 여유를 두 고 설정할 필요가 있다. 음원간의 간격은 공간 앨리 어싱 (spatial aliasing)을 고려하여 결정할 수 있다. 최적 빔포머는 아래의 식 (12)과 같이 주어지는 주 파수 상한 이상에서는, 지연 합 빔포머로 동작하게 된다. 그러므로 음원간의 간격은 관심 주파수의 상 한이 f_h 아래에 위치하도록 정한다.

$$f_{h} = c/2d . \tag{12}$$

안정화 계수는 허용하고자 하는 잡음 민감도 수준 에 따라 정한다. 그러나 잡음 민감도와 안정화 계수 간의 직접적인 관계를 구하는 것은 어렵기 때문에 반복적 방법을 이용하거나 [7], 그림 2 와 같은 DI-NS 선도를 이용하여 구할 수 있다. 그림 2 는 8 개 의 음원이 0.15 m 간격으로 배치되어 있을 때, 안정 화 계수 및 주파수 변화에 따른, 지향성 지표와 잡 음 민감도의 변화를 보여주고 있다.

그림 2. 안정화 계수 값에 따른 지향성 지표와 잡음 민감도 (N = 8, d = 0.15 m): ---, f/f_h=0.08; ---, f/f_h=0.16; ---, f/f_h=0.24; ---, f/f_h=0.33; ---, f/f_h=0.41; ---, f/f_h=0.50; ---, f/f_h=0.58; ---, f/f_h=0.66; -+-, f/f_h=0.75.

3.2 실제 음원 조건에 대한 고려

마이크로폰 어레이의 경우 일반적으로 어레이를 구성하는 요소의 크기가 관심 주파수 길이보다 충분 히 작으며, 특별한 목적의 마이크로폰이 아니면 무 지향성을 갖는다. 그렇기 때문에 모든 각도에 대해 Γ=1 로 단순화 시킬 수 있다. 그러나 라우드스피커 의 경우는 마이크로폰에 비해 상대적으로 크기 때문 에 반사체로써의 영향을 무시하기 어려우며, 자체적 으로 특정한 형태의 지향 패턴을 갖는다. 그러므로 Γ의 값은 각도에 따라 크게 달라지게 된다.

단순화된 구형이나 원통 형의 물체의 산란에 대한 해는 해석적으로 구할 수 있으나 [10], 다수의 복잡 한 형태의 물체들이 직접 음을 방사하는 경우, 다른 음원의 직접음이 다른 물체에 재귀적으로 영향을 미 치기 때문에 해석적으로 구할 수 없다. 이를 해결하 기 위하여 수치해석적 방법을 적용하거나 측정을 이 용할 수 있다. 어레이가 구성된 상태에서 *n* 번째 음 원 만이 동작하고 나머지는 동작하지 않는다고 하면, 이때 어레이 시스템에서 방사되는 음장은 *n* 번째 음 원의 전체음장 (직접음 + 산란장)의 방사 패턴이라 고 할 수 있다. 이 때 관찰면은 그림 3 과 같이 *n* 번 째 음원을 중심으로 하여 선택한다.

그림 3. 구성된 어레이의 *n* 번째 음원에 의한 전체 음장의 지향 패턴을 구하기 위한 관찰면 선정.

4. 모의 실험 예제

4.1 어레이 시스템의 모델링

실행 예제로, 크기가 0.11(넓이) X 0.16(높이) X 0.13(깊이) m 이고 진동판의 직경이 0.075 m 인 8 개 의 음원을 이용하여 지향성 어레이를 구성하여 보았 다. 관심 주파수 영역은 100~1000 kHz 로 잡았고, 공간 앨리어싱을 피하기 위해 음원간의 간격은 0.15 m 로 하였다. 단일 음원의 지향특성을 구하기 위해 경계요소법이 적용되었으며, 그림 4 는 단일 음원과 어레이 시스템의 경계요소 모델을 보여주고 있다. 각 음원은 106 개의 선형 삼각형 요소로 모델링되었 으며, 주파수 상한은 λ /6 기준에 의해 1 kHz 가 되 도록 하였다. 진동판의 중앙을 제외한 모든 질점은 강체로 두었고, 3.2 절에 제시된 방법으로 각 음원의 전체음장 방사 패턴을 구하였다.

그림 4. (a) 단일 음원의 경계요소 모델, (b) 어레이 시스템의 경계요소 모델.

4.2 예제 |: 지향성 지표의 최대화

첫 번째 예제로 잡음 민감도를 20dB 이하로 유지 하면서 지향성 지표를 최대화 하도록, 최적 빔포머 를 유도하였다. 빔포머는 두 가지 방법으로 유도 되 었다. 첫 번째로는 단일 음원을 무지향성으로 가정 하고, 음원에 의한 회절 및 산란의 영향도 무시하였 다 (단순음원 가정). 두 번째는 3.2 절에 제시된 대 로, 각 음원에 대한 전체음장의 지향특성을 고려하 였다. 안정성 계수는 그림 2 와 같은 DI-NS 선도에 서 조건을 만족하도록 선정하였다.

이렇게 구해진 빔포머를 적용하였을 때 얻어지는 어레이 시스템의 성능을 경계 요소법을 이용하여 구 하여보았다. 그림 5 는 경계 요소법으로 계산 된 결 과와 식 (1), (2)를 통해 예측된 결과를 비교한 것이 다. 단순 음원으로 가정하였을 경우에는 예측치와 수치해석 결과로 얻어진 지향성 지표가 최대 4 dB 까지 차이를 보이나, 단순 음원의 지향특성을 반영 한 경우 1 dB 이내의 차이로 정확히 예측되는 것을 알 수 있다. 그림 6 은 주파수에 따른 방사패턴을 경 계요소법으로 계산한 결과를 보여주고 있으며, 단위 음원의 지향성을 고려한 경우가 더 좋은 성능을 보 이는 것을 알 수 있다.

그림 5. 지향성 지표가 최대화 되도록 설계된 시
스템의 지향성 지표 비교: -●-,식 (1), (2)를
이용한 예측치; -●-, 경계요소법 계산 결과
(a) 단순음원 가정 이용한 경우, (b) 단일 음
원의 전체 음장 지향성을 고려한 경우.

그림 6. 지향성 지표가 최대화 되도록 설계된 어레이 시스템의 지향성 패턴 모의실험 (경계요소법) 결과: (a) 단순음원 가정 이용한 경우, (b) 단일 음원의 전체 음장 지향성을 고려한 경우.

4.3 예제 2: 등빔폭 어레이 (Constant beamwidth array)

두 번째 예제로는 주파수 변화에도 빔폭이 일정하 게 유지 되도록 하는 빔포머를 유도하였다. 만일 동 일한 지향성 지표 값을 갖는 경우 동일한 지향 특성 을 갖는다고 가정하면, 동일한 지향성 지표값을 갖 게 함으로써 등빔폭 어레이를 구성하는 것이 가능하 다.

최적 빔포머의 경우는 DI-NS 선도 상에서 적절한 안정화 계수값을 선택함으로써 지향성 지표를 제어 할 수 있다. 이 방법은 제어 가능 폭이 좁기는 하지 만, 음원 간격을 바꾸거나 어레이 구성요소의 일부 만을 이용하는 방법보다 쉽고 효율적으로 지향특성 을 제어할 수 있는 장점이 있다.

지향성 지표가 관심 주파수 대역에서 12 dB로 유 지되도록 안정화 계수를 선정하고, 예제 1 과 동일한 방법을 적용하여 구한 어레이의 성능은 그림 7 과 같다. 예제 1 의 경우와 마찬가지로, 단순 음원의 지 향특성을 반영한 경우가 목표값에 가까운 지향 특성 을 갖는 것을 알 수 있다. 그림 8 의 지향성 패턴에 서 보면, 저주파수 영역에서 몇몇 각도에 대해 높은 음압이 방사되는 것을 관찰 할 수 있다.

그림 7. 주파수에 따라 빔폭이 일정하도록 (DI=12 dB) 설계된 시스템의 지향성 지표 비교: →→, 식 (1), (2)를 이용한 예측치;
→→, 경계요소법 계산 결과 (a) 단순음원 가정 이용한 경우, (b) 단일 음원의 전체 음 장 지향성을 고려한 경우.

그림 8. 주파수에 따라 빔폭이 일정하도록 (DI=12 dB) 설계된 어레이 시스템의 지향성 패턴 모의실험 (경계요소법) 결과: (a) 단순음원 가정 이용한 경우,(b) 단일 음원의 전체 음장 지향성을 고려한 경우.

5. 실제 시스템 구성 및 성능 측정

5.1 시스템 구성

설계 된 필터의 실제 성능을 확인하기 위하여, 그 림 9 와 같은 시스템을 구성하였다. 모의실험과 동일 한 조건의 어레이 시스템을 구성하고, 이를 무향실 내의 턴테이블 위에 설치하여 지향성을 측정하였다. 신호는 PC 상에서 matlab 프로그램에 의해 제어하 였으며, 신호는 다채널 사운드 카드 (RME HDSP MADI + ADI-648)와 D/A 컨버터(Sonic emotion M3S amp)를 거쳐 라우드 스피커로 전달되도록 하 였다.

5.2 예제 1: 일정 안정화 계수 적용

첫 번째 예제로, 안정화 계수를 모든 주파수 대역에 대해 0.01 로 놓고 시스템을 구성하였다. 빔포머는 모의 실험과 마찬가지로 두 가지 방법을 적용하여 유도하였다. 그림 10 은 지향성 지표, 그림 11 은 지향성 패턴을 비교한 것이다. 모의실험 결과와 마찬가지로 단일 음원의 지향성을 고려한 경우가 예측치와의 차이가 적고, 지향성도 더 크게 나타나는 것을 알 수 있다.

(b)

그림 9. (a) 라우드스피커 어레이 및 측정 시스템 구 성도, (b) 어레이 시스템 사진.

고림 10. 일정한 안정화 계수 (β=0.01)로 설계된 시스템의 측정된 지향성 지표 비교: ━━,식(1), (2)를 이용한 예측치; •●•, 측정 결과 (a) 단순 음원 가정 이용한 경우, (b) 단일 음원의 전체 음장 지향성을 고려한 경우.

그림 11. 일정한 안정화 계수 (β=0.01)로 설계된 어레이 시스템의 지향성 패턴 측정 결과: (a) 단 순음원 가정 이용한 경우, (b) 단일 음원의 전체 음장 지향성을 고려한 경우.

5.3 예제 2: 등빔폭 어레이

두 번째 예제로는, 4.3 절에서 설계 된 등빔폭 어 레이 시스템을 실제 시스템에 적용하여 그 성능을 알아보았다. 그림 12 와 같이 두 방법 모두 목표치 보다 낮은 지향성 지표가 얻어지지만, 단일 음원의 지향성을 고려한 경우가 더 높고 균일한 지향성 지 표를 보이고 있다. 그림 13 의 지향성 패턴에서 보면, 그림 8 의 모의실험 결과에 비교하였을 때, 단일 음 원의 지향성을 고려한 경우 중심 로브 폭은 크게 차 이를 보이지 않지만, 중심 로브 이외의 부분이 전체 적으로 음압이 높은 것을 알 수 있다. 이 결과 실측 의 경우가 모의실험에 비하여 지향성 지표가 낮게 나타나게 된다.

그림 12. 주파수에 따라 빔폭이 일정하도록 (DI=12 dB) 설계된 시스템의 측정된 지향성 지표 비교: →→→, 목표치; -◆→, 단순음원 가정 이용한 경 우; →→→→→, 단일 음원의 전체 음장 지향성을 고 려한 경우.

그림 13. 주파수에 따라 빔폭이 일정하도록 (DI=12 dB) 설계된 어레이 시스템의 지향성 패턴 측정 결과: (a) 단순음원 가정 이용한 경우, (b) 단일 음원의 전체 음장 지향성을 고려한 경우.

6. 결 론

본 연구에서는 높은 지향성의 라우드스피커를 구 성하기 위하여 축방향 형태로 배치된 어레이 시스템 에 최적 빔포밍 방법을 적용하였다. 설계 변수로는 음원의 개수, 음원간의 간격, 그리고 최적 빔포머의 안정화 계수가 고려되었으며, 목표 성능에 따라서 이들을 선정하는 방법에 대해 논의하였다. 또한 예 측값과 가까운 빔포머를 얻기 위하여 단일 음원의 지향성과 반사, 산란체로써의 영향을 동시에 고려한 방법을 제안하였고, 단순 음원으로 가정한 경우와 비교하였다. 실제 시스템에서 음원의 지향 특성을 고려함으로써 지향성 지표값이 2~3 dB 증가하였으 며, 예측치와의 차이도 3~6 dB 에서 1~3 dB 로 감 소됨을 관찰하였다.

후 기

본 연구는 한국 학술진흥재단의 국제 공동연구 지원 사업(KRF-2006-612-D00004)과 BK21 사업, 그리 고 2008 년도 정부(과학기술부)의 재원으로 한국과 학재단의 국가지정연구실사업으로 수행된 연구임 (R0A-2005-000-10112-0).

참 고 문 헌

(1) B. D. van Veen and K. M. Buckley, "Beamforming: a versatile approach to spatial filtering," IEEE ASSP Mag. 5, Apr. 1988, 4-24 (1988).

(2) D. E. Weston, "Jacobi sensor arrangement for maximum array directivity," J. Acoust. Soc. Am., 80, 1170-1181 (1986).

(3) H. Cox, R. M. Zeskind, and M. M. Owen, "Robust adaptive beamforming," IEEE trans. on Acoustics, Speech, and Signal Processing, ASSP-35, 1365-1376 (1987).

(4) E. N. Gilbert and S. P. Morgan, "Optimum design of directive antenna arrays subject to random variations," Bell Syst. Tech. J., 34, 637-663 (1955).

(5) J. M. Kates, and M. R. Weiss, "A comparison of hearing-aid array-processing techniques," J. Acoust. Soc. Am., 99, 3138-3148 (1996).

(6) L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics, Chap .7 (John Wiley & Sons, New York, 2000).

(7) I. Merks, Binaural application of microphone arrays for improved speech intelligibility in a noisy environment, Ph.D. thesis, Technical University of Delft (2000).

(8) M. Brandstein and D. Ward, *Microphone Arrays*, Chap. 2 (Springer, New York, 2001).

(9) R. L. Pritchard, "Maximum directivity index of a linear point array," J. Acoust. Soc. Am., 26, 1034-1039 (1954).

(10) E. G. Williams, *Fourier Acoustics – Sound Radiation and Nearfield Acoustical Holography*, Chap. 6 (Academic Press, London, 1999).