
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. INTRODUCTION 
 
For last few decades, the demands of light weight and 
higher speed toward higher power density of rotating 
machinery have been increased so that the rotor bearing 
system becomes continuously more flexible. The 
vibration problem of the flexible rotor caused by 
self-exited force, external disturbances, etc have 
increasingly attracted the intention of many researchers 
and the vibration control accordingly became the 
important issues to operate the machine safely and 
effectively. 
Generally, the accurate dynamic model of flexible rotor 
system is obtained by finite element analysis [1]; 
however its high degree of freedom makes the 
model-based controller design difficult so that numerous 
model reduction techniques have been developed to 
derive the smaller order of nominal model for effective 
approximation. 
Among various reduction methods, classic modal 
truncation is widely adopted mainly because it preserves 
the system’s modal properties that are retained in the 
model exactly [2]. However the criteria of choosing the 
‘important’ modes for control has not established yet so 
that it is not always clear which modes should be 
retained, especially to flexible rotor-bearing system. 
Modal truncation does not take input-output properties 
into account either.  
Two approaches including the balanced model reduction 
[3, 4] and Hankel norm approximation [5] are well 

known for model reduction to be most effective as the 
input-output properties are considered. The former 
method is based on transforming the state to a 
coordinate system in which the controllability and 
observability gramians are equal and diagonal, and 
deleting the states having small Hankel singular value 
which correspondingly means small controllability and 
observablility gramian. The latter seeks the optimal 
solution that minimizes the Hankel norm of the 
differences between nominal and reduced model. If we 
consider a flexible structure that is described by modal 
coordinates, then it has been shown [6] that its gramians 
are approximately diagonal and equal, i.e. modal 
coordinates are approximately balanced, as long as all 
modes are lightly damped and all natural frequencies are 
widely separated. However these two methods are 
inadequate for reduction of flexible rotor-bearing FEM 
model because those produce an approximating model 
over the entire frequency range and lose the physical 
interpretation which is capable for modal truncation. 
In this study, the criteria by which the important modes 
be selected is proposed based on the initial modal model 
considering input-output properties of flexible rotor 
supported two active magnetic bearing system. It is 
accomplished by comparing the minimum input energy 
and output energy of each mode over the whole 
operational speed. For the control implementation 
subjected to transient disturbances, small order modal 
state model is obtained and the model error verification 
between original and reduced one follows. 
 
2. FE Analysis and Modal Equation  
 
Finite element model of a flexible rotor system 
supported by active magnetic bearing is shown in figure 
1; it consists of 21 elements and is modeled by Rayleigh 
beam elements with isotropic bearing stiffness and 
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damping of 433 10 /N m× and 200 /Ns m respectively [1]. 
Through FE analysis, 44 dof equation of motion in 
complex domain can be written as following 

( )j+ − ΩMp C G p + Kp = g  (1) 

where , ,  and M C G K are the mass, damping, gyroscopic 
and stiffness matrices; j= +p y z  is the complex 
displacement vector of each nodes and g  is external 
forcing vectors. By means of the modal transformation 
and the modal expansion, Modal equation of 88 dof can 
be obtained as 
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and { }1 1 2 44

TB F B Fζ ζ ζ ζ=ζ is the complex 
modal state vector. { }3 15

Tg g=g denotes actuator 
force vector at third and fifth nodes and { }1 17

Ty y=y  
is the sensor output vector at first and 17th nodes. In the 
matrices ,  and A B C ,  and uλ  is the eigenvalue and 
modal input coefficient respectively and the eigenvalue 
is denoted by iλ σ ω= + . Upper right superscripts, 

 and B F , mean backward and Forward direction. 
Lower right subscript means corresponding modal 
equation number. Lower left subscript means 
corresponding forcing node. 
The whirl-speed chart is shown in figure 2 which just 
illustrates 10 modes. Due to gyroscopic effect, it is 
found that the natural frequencies are varied with 
respect to rotational speed. 
 
3. Modal Model Reduction  
 
Suppose that the whole rotor system is perturbed by two 

equal impulses at bearings’ nodes so that the initial 
condition 0(0) =ζ ζ  holds. Minimum control energy 
required to reach the desired modal 
state ( ) 0TT = =ζ ζ can be computed by solving 
minimum control energy problem with the constraints 
of initial conditions as following [7, 8] 

0
minimize  ( ) ( ) ( )

T HE t t dt= ∫g g g  (4) 

where superscript H menas conjugate transpose of the 
matrix. The optimal solution is given by 

( )( ) 1
0( ) ( )
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where ( )tP  is the controllability gramian matrix 
defined by 
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Each elements of the controllability gramian matrix 
( )tP  is expressed like 
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By applying control law of equation (5), the minimum 
control energy index gE  becomes 

( ) ( )1
0 0( )

HT T
g T Te T e−= − −A AE ζ ζ P ζ ζ  (8) 

At this point, it should be pointed out that the 
controllability gramian is approximately diagonal in 
modal equation [6]. Therefore gE  is also diagonal 
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Figure 1. 21 elements FEM model 
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dominant matrix so that it can be very closely 
approximated by the summation of diagonal elements of 
which each means the minimum control energy of 
corresponding mode. 
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Figure 3 shows minimum control energy i
rgE  in case 

of 0.05T s= . 
Next, assuming the system is on the initial condition 

0(0) =ζ ζ  with ( ) , 0t t= ≥g 0 , then the output energy is 
[5] 

0 00
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where Q  is the controllability gramian matrix defined 
by 
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where Q also is diagonal dominant matrix, accordingly 
the diagonal elements is expressed like 
As a result, equation (10) described by equation (12) 
becomes 
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By comparing the ratio between equation (9-b) and 
(13-b) for each mode, mode selection index can be 
defined as 
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In figure 5 is shown a plot of mode selection index of 
equation (14) versus the rotational speed and first five 
modes (1B, 1F, 2B, 2F and 3B) of which MSI value is 
small are chosen for modal truncation. 
Model reduction error for five modes truncation can be 
expressed as a percentage by 
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This model reduction error is shown in figure 6, which 
illustrated the error can be considered less than two 
percent for the most of the operational speed.  
 
4. Conclusion  
 
In this paper, a mode selection criterion called as Mode 
Selection Index (MSI) is proposed for the modal 
truncation of flexible rotor system supported by two 
active magnetic bearings. On the assumption of impulse 
disturbances at bearing locations, MSI is determined by 
the ratio between minimum input energy and output 
energy. Using MSI, five lower modes are chosen for 
reduction of which error are found to be around two 
percent. 
 

References 

(1) Lee, C. W., 2000, Vibration Analysis of Rotors, 
The Netherlands: Kluwer Academic Publishers. 

(2) Lee, C. W. and Kim, J. S., 1992, “Modal Testing 
and Suboptimal Vibration Control of Flexible Rotor 
Bearing System by Using a Magnetic Bearing,” 
ASME Journal of Dynamic Systems, Measurement, 
and Control, Vol. 114, pp. 244-252. 

(3) Moore, B. C, 1981, “Principal components 
analysis in linear systems: controllability, 
observability and model reduction,” IEEE 
Transactions on Automatic Control, Vol. 26, No. 1, 
pp. 17–31. 

(4) Fan, G. W, Nelson, H. D., Crouch, P. E. and 
Mignolet, M. P., 1993, “LQR-Based Least-Squared 
Output Feedback Control of Rotor Vibrations Using 
the Complex Mode and Balanced Realization 
Methods,”  ASME Journal of Engineering for Gas 
Turbines and Power, Vol. 115, pp. 315-323. 

(5) Glover, L, 1984, “All optimal Hankel-norm 
approximations of linear multivariable systems and 

their L∞ norm bounds,” International Journal of 
Control, Vol. 39, pp. 1115–1193. 

(6) Gregory, C. Z, 1984, “Reduction of large flexible 
spacecraft models using internal balancing theory,” 
Journal of Guidance Control and Dynamics, Vol. 7, 
pp. 725-732. 

(7) Bryson, A. E. Jr and Ho, Y, 1975, Applied 
Optimal Control: Optimization, Estimation, and 
Control, Taylor & Francis. 

(8) Chen, C, 1984, Linear System Theory and Design, 
Oxford University Press. 

 

293




