

Jean-Louis Migeot Free Field Technologies

Presented to the Korean NVH Conference, November 2008

Copyright Free Field Technologies

Outline

- - Governing equations
 - Lighthill's analogy and comparison with integral methods
 - Implementation in Actran
- Exterior and interior problems
 - Flat plate using Fluent
 - Helmholtz resonator in a duct using Star-CD
 - Double diaphragm using Star-CD
- Porous boundary condition
- Conclusions

Lighthill's Analogy: Sketch

- ⇒ A CFD computation (URANS, LES, DNS, ...) is used to determine the flow
- The sound sources are calculated from these results
 - Use of Lighthill's analogy
 - Standard simplifying assumptions

Lighthill's Analogy: General idea

- Start from the equations of the Fluid Dynamics
- Make as few assumptions as possible
- Manipulate the equations to "form" a wave equation of this form

$$\frac{\partial^2 \rho_a}{\partial t^2} - a_0^2 \frac{\partial^2 \rho_a}{\partial x_i \partial x_i} = \{\text{Source Terms}\}$$

Where ρ_a is the acoustic variable and the source term depends on ρ_a u,v,w,p

- Put the Boundary Conditions of the Finite Elements
 - Any BC type can be used !!!
 - This is the main difference with the classical, less powerful implementations (Curle, FWH or BEM)

Actran/LA Computational Sequence

Coupling with CFD codes

- The coupling is operational for most standard CFD codes
 - Star-CD
 - Star-CCM+
 - Fluent
 - CFX
 - Powerflow
 - AcuSolve
 - OpenFOAM
 - .. a

Example: Fluent's GUI

Some Actran/LA Customers

Visteon

Copyright Free Field Technologies

Helmholtz Resonator

AIAA05-3067: Aeroacoustic Simulation of the Noise radiated by an Helmholtz Resonator placed in a Duct - S.Caro, P.Ploumhans, X.Gallez, F.Brotz, M.Schrumpf, A.Read, F.Mendonca

Copyright Free Field Technologies

Double Diaphragm

AIAA05-2976: Aeroacoustic Simulation of Double Diaphragm Orifices in an Aircraft Climate Control System - F. Mendonça, A.Read, S.Caro, K.Debatin, B.Caruelle

Results

Applications with no experimental validation

Main idea

- "Porous" Ffowcs-Williams and Hawkings idea applied to FEM
 - The sources outside the rotor zone will be accounted for "as usual" in Actran/LA
 - The sources in the rotor zone will be accounted for via a dedicated boundary condition
 - Start again from Lighthill's equations and put the boundary conditions
- ☼ Same idea as Kirchhoff theorem: the effects of the sources in the white area are accounted for through the orange boundary
 - Similarities in electromagnetism (Gauss theorem), optics...

HVAC blower

Fan Noise 2007: Presentation of a CAA formulation based on Lighthill's analogy for fan noise - S. Caro, Y. Nishio, R.Sandboge, J. Iyer

Copyright Free Field Technologie:

Axial EC fan

- Different heat exchanger types (weak influence)
- Several microphones everywhere; normalized test = average the results

Mower application

Lighthill Sources and Acoustic Field

Capyright l'ree Field Technologies

Side Mirror noise: Modeling strategy

- The formulation is FULLY COMPATIBLE with the vibro-acoustic features
 - A side window can be modeled by a visco-elastic shell
 - Its seal can be modeled by a visco-elastic material
 - The seats, carpets, dashboard etc can be modeled using the Biot model and/or admittance

Conclusions

- Actran/LA formulation relies on a FEM-dedicated basis.
 - The source formulation is much superior to the dipole/quadrupole formulations
 - The sources must be known with accuracy only where they are intense
 - The quality of the CFD does not need to be excellent
 - The method has been generalized to rotating machines
- ⇒ Actran/LA is coupled to several CFD codes including the major ones; several "industrial-like" cases have been treated with some of them
- Actran/LA can be used for blower or axial fan applications
- Extension to Aero-Vibro-Acoustics is no problem
- Actran/LA has all the attributes of the other Actran family products

19

Copyright Free Field Technologies

Jean-Louis Migeot Free Field Technologies

Presented to the Korean NVH Conference, November 2008

Actran for Exterior Acoustics

- Results provided (among other)
 - Acoustic pressure and power
 - Power distribution and radiation efficiency
- Realistic excitations
 - Vibration patterns from standard structural codes (NASTRAN, ANSYS)
- Ease of Mesh
 - Structural & acoustical meshes are unequal
- ⇒ Fast Solvers
 - Direct and iterative solvers
 - Multiple Load solver (all regimes in a single computatio)
 - Restart Capability
- Applications
 - Engine: power train and auxiliaries (oilpan, manifold, exhaust, ...)
 - Engine compartment insulation
- 21 Any vibrating / radiating & Timb & The Holling Common Common

Standard Computation Process

Restart Capability

- New solver sequences allow the storage of the acoustic results before imposing the excitations. The application of the excitation can be done subsequently in a very short time.
- Thanks to this restart capability, the acoustic computation can be uncoupled from the structural computations. This eases the industrial process: if you modify the material properties or the excitation of your structural model, you do not have to re-do the acoustic computation, only the post-processing must be re-done.
- This restart capability also allows the smart handling of results for multiple RPM (with different frequencies for each RPM).
- ACTRAN have special capabilities to read large amount of structural data.

23

Copyright Free Field Technologies

Modeling Steps - Acoustic Model

3D mesh generation

- There are several meshing tools on the market allowing fast 3D mesh generation.
- Wrapping functions (in ANSA or other) will create for you a closed external surface of your structural model. This surface will carry the structural information.
- The 3D elements are easily generated with any meshing tools.

Copyright Free Field Technologies

Waterfall Diagram

Dedicated tool to post-process efficiently results on waterfall diagrams

Case Study: Gearbox (1/2)

- BorgWarner was doing acoustic simulations with a BEM solver for assessing the noise radiated by its mechanical components
- ⇒ BorgWarner engineers faced a major issue:
 - the computation times were too long hence it was difficult to respect the design schedules

27

Copyright Free Field Technologies

Case Study: Gearbox (2/2)

- Performance, single loadcase:
 - BorgWarner BEM Software: 1.5 hours (Xeon 64 bits machine)
 - Actran: 8 minutes (Dell PC)
 - A multiple loadcase would not take much more time

Using ACTRAN/AR for reconstructing the velocity field from pressure measurements

- ACTRAN/AR may be used in an inverse mode:
 - Experimental data is available for the pressure at a set of microphones
 - ACTRAN/AR reconstructs the normal velocity field on the vibrating surface

Realistic velocity patterns are chosen

Quality vs. # of microphones

Summary: key features for AR

Source import

- Direct import from Nastran, ANSYS
- Direct import of all the RPM from the files containing the structural results

Solver

- Direct computation of all RPM (multiple load case): one matrix resolution with multiple RHS
- Efficient solvers (MUMPS, SPARSE, Iterative)
- Frequency parallelisms available for very large problems

In practice

- Small problems run on a desktop
- Large problems can exceed 3kHz on a car engine

3D model created in a few minutes thanks to the unequal meshes.

... And all the Actran standard features Copyright Free Field Technologies

Complete Industrial Process

