기판의 표면특성과 중첩도가 잉크젯 미세라인 패턴에 미치는 영향 Effects of Surface Characteristics and Drop Overlaps on Inkjet-Printed Fine Line Patterns

*강병주¹, #오제훈²

*B. J. Kang¹, *J. H. Oh(jehoon@hanyang.ac.kr)² ¹ 한양대학교 기계설계·메카트로닉스공학과, ²한양대학교 기계공학과

Key words: Inkjet Printing, Line Pattern, Shape, Morphology

1. 서론

잉크젯 프린팅이 기존의 Photolithography 공정이 가지고 있는 단점이자 한계인 복잡한 공정과정, 높은 제조 원가 그리고 환경적인 문제 등을 극복할 새로운 기술로 여러 분야에서 연구되며 관심을 받고 있다[1]. Drop-on-demand 방식의 잉크젯 프린팅은 원하는 위치에 잉크를 떨어뜨리고 기판 위에 안착된 Drop 들이 모여서 Pattern 을 만들게 된다. 따라서 Drop의 거동이 Line pattern의 선폭이나 Morphology를 결정짓는 중요한 요소가 된다[2].

본 연구에서는 Polyimide 기판을 플라즈마 표면처리 하여 기판의 표면 에너지를 변화시켰으며 은 나노입자가 포함된 콜로이드 형태의 잉크를 사용, 상온에서 75℃까지 가열된 기판 위에 Line pattern을 인쇄하였다. 또한 Drop의 간격을 다양하게 변화시켰다. 최종적으로 이러한 공정변수들이 Line pattern의 형상과 Morphology에 어떠한 영향을 미치는지 알아보았다.

2. 실험절차

기판으로는 Polyimide 를 사용하였고 다양한 표면 에너지를 얻기 위해 PE-CVD 를 이용하여 표면처리를 하였다. 공정가스로는 C_4F_8 를 사용하고 가스의 Pressure 와 RF power를 변화시켜가며 표면의 젖음성(Wettability)을 제어하였다. 또한 기판의 친수성(Hydrophilicity)을 높이기 위해 O_2 또는 Ar을 C_4F_8 에 첨가하였다.

Drop-on-demand 방식의 inkjet system 을 이용하였으며 MicroFab 사의 30 ㎞ 노즐을 통해 표면 처리된 기판 위에 가로, 세로 각각 100 ㎞ 간격으로 (10 x 10)Drop을 인쇄하였다. 그 중에서 대각선 상에 위치한 Drop의 지름을 3D Noncontact surface profiler를 이용하여 측정하였다. 그리고 지름의 평균값을 구하여 표면의 젖음성(Wettability) 정도를 평가하였다. 표면평가 후 지름이 30 ㎞ ~ 70 ㎞인 Drop을 형성하는 기판 위에 연속된 Line pattern을 인쇄하였다. Drop의 중첩도를 10% ~ 60%까지 10%씩 증가시켜가며 Line을 인쇄하였으며 각각의 중첩도에서 Line의 길이와 간격은 40mm와 300 ㎞이다. 그리고 기판의 온도를 상은뿐만 아니라 45℃와 65℃ 그리고 75℃까지 가열하였다. Line pattern을 인쇄한 후에 현미경과 3D Non-contact surface profiler를 이용하여 Line의 선폭과 최종형상 그리고 Morphology를 측정,평가하였다.

3. 실험결과 및 고찰

표면 반응법을 통해 공정가스의 Pressure 와 RF power 가건조된 Drop 의 지름과 어떤 관계를 갖는지 알아보았다. 그리고 그 결과로부터 지름의 크기가 $30~\mu$ m, $40~\mu$ m 그리고 $50~\mu$ 0 Drop 을 형성하는 플라즈마 공정조건을 찾았다. 그러나 공정가스로 C_4F_8 를 사용할 경우 지름이 $50~\mu$ 0이상인 Drop 을 형성할 수가 없었다. 그래서 기존에 사용된 C_4F_8 에 O_2 또는 Ar 을 다양한 부피 비로 첨가하였고 C_4F_8 의 Pressure 와 RF power는 이전실험에서 $40~\mu$ m의 Drop 을 형성했던 조건으로 고정하였다.

Table 1 은 지름이 30 /m ~ 70 /m인 Drop 을 형성하는 플

Table 1 Plasma treatment conditions for various dried droplet diameters on the PI substrate.

Substrate type	Gas (Volume ratio)	Pressure 1 (mTorr)	RF Powe (W)	er Dried droplet diameter (µm)
S30	C_4F_8	620	280	30.0±1.0
S40	C_4F_8	320	135	40.0±1.0
S50	C_4F_8	145	250	48.3±0.7
S60	$C_4F_8: O_2 = 1:0.75$	320	135	59.8±1.2
S70	$C_4F_8: O_2 = 1:1$	320	135	68.6±0.4

라즈마 공정조건을 나타내고 있다. 첨가된 O_2 의 비율이 증가할수록 기준조건인 40 μ 보다 지름이 증가하는 것을 볼수 있다. 이는 C_4F_8 에 의해 형성되는 불소 기능군이 첨가된 가스에 의해 감소하여 결과적으로 기판의 소수성 (Hydrophobicity)을 낮추기 때문이다.

Fig. 1 은 S30 ~ S70 인 기판 위에 중첩도를 달리하여 Line pattern을 인쇄하였을 경우 Pattern 의 최종 형상을 나타내고 있다. 그리고 이 때의 기판온도는 상온이다. S30의 기판일 경우 10%에서 60%까지 모든 중첩도에서 Line 이 형성되지 않고 근접해 있는 Drop 들이 서로 뭉쳐져서 보다큰 Dot 을 형성하는 것을 볼 수 있는데 이는 표면 에너지가 낮아 잉크가 매우 불안정한 상태에 있기 때문이다. S40~ S70의 기판 위에 중첩도를 증가시키면서 Line을 인쇄하였을 경우 부분적으로 Line 이 형성되는 곳도 있지만 전체적으로 Bulge가 발생하였으며 중첩도가 증가할수록 발생빈도가 잦아지는 것을 볼 수 있다. 이는 중첩도가 증가하면서 Drop 간의 상호작용이 더욱 강해지기 때문이다.

Fig. 2 는 S70 기판의 온도를 증가시켰을 경우 중첩도에 따른 Line 의 형상을 보여주고 있다. 기판의 온도가 45℃이고 중첩도가 10% ~ 30%일 경우에는 Line pattern 에 Bulge 가발생하였다. 하지만 40%이상의 중첩도에서는 Bulge 가 없는 Line 이 형성되었다. 기판의 온도를 65℃ 그리고 75℃까지높이면 중첩도에 상관없이 Bulge 가 발생하지 않았다. 이는고온의 기판에서 Line pattern 의 건조가 빨라지고 Bulge 가발생하기 전에 안정화되기 때문이다.

Fig. 3 은 S70 기판에서 중첩도와 기판의 온도를 변화시 켰을 때 Single drop 과 Line pattern 의 Morphology 에서 Peakto-valley 의 비율을 나타낸다. 이것을 통해 인쇄된 Drop 뿐 만 아니라 Line pattern 도 Coffee stain[3,4]의 영향을 받는다 는 것을 알 수 있다. Peak-to-valley 의 값이 1 인 경우는 Pattern 에 Coffee stain 이 발생하지 않은 것을 뜻하고 그 값 이 작아질수록 Coffee stain 이 더욱 심해지는 것을 의미한다. Fig. 3 을 통해 알 수 있듯이 기판의 온도가 45℃일 때는 Coffee stain 이 발생하지 않았지만 기판을 65℃이상 가열하 게 되면 모든 중첩도에서 Coffee stain 이 관찰되었다. 중첩 도가 증가할수록 Peak-to-valley 의 값이 작아졌지만 그 차이 가 크지는 않다. 그리고 기판의 온도가 각각 65℃와 75℃ 일 때의 Peak-to-valley 값을 비교해보면 온도가 65℃인 기판 위에서 생성된 Line 의 Peak-to-valley 값이 75℃일 때보다 전 체적으로 작은 것을 볼 수 있는데 이는 기판의 온도가 65℃일 때 인쇄된 Line pattern 의 선폭이 더 넓고 높이가 낮

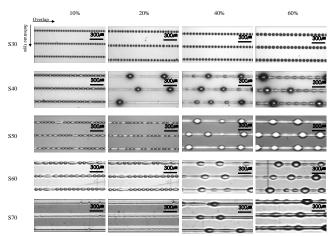


Fig. 1 Microscopic images of lines printed on different types of substrates for various droplet overlaps at room temperature.

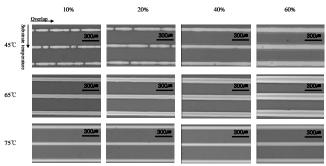


Fig. 2 Microscopic images of lines printed on the S70 substrate at different substrate temperature.



Fig. 3 Ratio of the valley to peak in the morphology of lines printed on the S70 substrate at various substrate temperatures and overlaps.

기 때문에 75℃보다 온도가 낮음에도 불구하고 Line pattern 의 가장자리 부분의 증발이 더욱 빠르게 일어나기 때문이다.

4. 결론

플라즈마 표면처리를 통해 다양한 지름의 Drop 을 형성하는 기판을 제작하였고 기판의 온도와 Drop 의 중첩도를 변화시켜가며 Line pattern 을 인쇄하였다. 상온에서 Line pattern 을 인쇄할 경우 기판 위의 Drop 이 불안정하여 Line pattern 이 끊어지거나 Bulge 가 발생하여 원하는 Pattern 을 만들 수 없었다. 기판을 가열함으로써 Drop 의 거동을 제어하여 위와 같은 문제점을 어느 정도 해결할 수 있었다. 하지만 기판의 온도를 높임에 따라 Line pattern 에 Coffee stain 이 발생하여 Pattern 의 Morphology 가 나빠지는 현상 또한

관찰할 수 있었다.

참고문헌

- Murata, K., Matsumoto, J., Tezuka, A., Matsuba, Y. and Yokoyama, H., "Super-fine ink-jet printing: toward the minimal manufacturing system," Microsystems Technologies, 12, 2-7, 2005
- Kawase, T., Shimoda, T., Newsome, C., Sirringhaus, H. and Friend, R.H., "Inkjet printing of polymer thin film transistors," Thin Solid Films, 438-439, 279-287, 2003
- Deegan, R.D., BaKajin, O., Dupont T.F., Huber G., Nagel S.R. and Witten, T.A., "Capillary flow as the cause of ring strains from dried liquid drops," Nature, 389, 827-829, 1997
- 4. de Gans, B.J., Schubert, U.S., "Inkjet Printing of Well-Defined Polymer Dots and Arrays," Langmuir, **20**, 7789-7793, 2004